找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computational Visual Media; 12th International C Fang-Lue Zhang,Andrei Sharf Conference proceedings 2024 The Editor(s) (if applicable) and

[復(fù)制鏈接]
查看: 21344|回復(fù): 49
樓主
發(fā)表于 2025-3-21 19:15:18 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Computational Visual Media
副標(biāo)題12th International C
編輯Fang-Lue Zhang,Andrei Sharf
視頻videohttp://file.papertrans.cn/234/233216/233216.mp4
叢書名稱Lecture Notes in Computer Science
圖書封面Titlebook: Computational Visual Media; 12th International C Fang-Lue Zhang,Andrei Sharf Conference proceedings 2024 The Editor(s) (if applicable) and
描述This book constitutes the refereed proceedings of CVM 2024, the 12th International Conference on Computational Visual Media, held in Wellington, New Zealand, in April 2024..The 34 full papers were carefully reviewed and selected from 212 submissions. The papers are organized in topical sections as follows:.Part I: Reconstruction and Modelling, Point Cloud, Rendering and Animation, User Interations..Part II: Facial Images, Image Generation and Enhancement, Image Understanding, Stylization, Vision Meets Graphics..
出版日期Conference proceedings 2024
關(guān)鍵詞Animation and physical simulation; Cognition of visual media; Content security of visual media; Editing
版次1
doihttps://doi.org/10.1007/978-981-97-2092-7
isbn_softcover978-981-97-2091-0
isbn_ebook978-981-97-2092-7Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapor
The information of publication is updating

書目名稱Computational Visual Media影響因子(影響力)




書目名稱Computational Visual Media影響因子(影響力)學(xué)科排名




書目名稱Computational Visual Media網(wǎng)絡(luò)公開度




書目名稱Computational Visual Media網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Computational Visual Media被引頻次




書目名稱Computational Visual Media被引頻次學(xué)科排名




書目名稱Computational Visual Media年度引用




書目名稱Computational Visual Media年度引用學(xué)科排名




書目名稱Computational Visual Media讀者反饋




書目名稱Computational Visual Media讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:37:11 | 只看該作者
Explore and?Enhance the?Generalization of?Anomaly DeepFake Detection These detection methods primarily enhance generalization by constructing pseudo-fake samples, which involve three main steps: mask generation, source-target preprocessing, and blending. In this paper, we conducted a systematic analysis of some core factors in these steps. Based on the aforementione
板凳
發(fā)表于 2025-3-22 00:50:40 | 只看該作者
地板
發(fā)表于 2025-3-22 07:17:40 | 只看該作者
Face Expression Recognition via?Product-Cross Dual Attention and?Neutral-Aware Anchor Losshis task is challenging due to the ambiguities in expressions and also in the diverse poses and occlusions of the head. To handle this challenging task, recent approaches usually rely on attention mechanism to make the network focus on the most critical regions of a face, or apply a consistency loss
5#
發(fā)表于 2025-3-22 11:57:41 | 只看該作者
6#
發(fā)表于 2025-3-22 16:52:39 | 只看該作者
Single-Video Temporal Consistency Enhancement with?Rolling Guidancelic. However, ensuring the temporal consistency of generated videos is still a challenging problem. Most existing algorithms for temporal consistency enhancement rely on the motion cues from a guidance video to filter the temporally inconsistent video. This paper proposes a novel approach that proce
7#
發(fā)表于 2025-3-22 17:11:03 | 只看該作者
8#
發(fā)表于 2025-3-22 22:07:31 | 只看該作者
Silhouette-Based 6D Object Pose Estimationwn objects beyond the training datasets, due to the closed-set assumption and the expensive cost of high-quality annotation. Conversely, traditional methods struggle to achieve accurate pose estimation for texture-less objects. In this work, we propose a silhouette-based 6D object pose estimation me
9#
發(fā)表于 2025-3-23 04:51:45 | 只看該作者
Robust Light Field Depth Estimation over?Occluded and?Specular Regionsh range, with the highest level of consistency indicating the correct depth. These methods are based on the photo consistency of Lambertian surface. However, the photo consistency is broken when occlusion and specular reflection occur. In this paper, a new depth estimation algorithm is proposed to s
10#
發(fā)表于 2025-3-23 09:09:26 | 只看該作者
Foreground and?Background Separate Adaptive Equilibrium Gradients Loss for?Long-Tail Object Detectioss. However, in the presence of long-tail distribution, the performance is still unsatisfactory. Long-tail data distribution means that a few head classes occupy most of the data, while most of the tail classes are not representative, and tail classes are excessive negatively suppressed during train
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 02:30
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
阿拉善左旗| 武夷山市| 全南县| 宁武县| 巴林右旗| 赤峰市| 哈巴河县| 五河县| 青阳县| 葫芦岛市| 灵山县| 宁安市| 衡山县| 石台县| 丰县| 土默特左旗| 雷山县| 大姚县| 大渡口区| 蓬安县| 新绛县| 竹北市| 泾川县| 湘潭市| 德惠市| 高安市| 清河县| 栖霞市| 玛纳斯县| 壤塘县| 翼城县| 清丰县| 鹤庆县| 读书| 黑水县| 桃江县| 开阳县| 福泉市| 凤凰县| 襄樊市| 吉首市|