找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computational Sciences - Modelling, Computing and Soft Computing; First International Ashish Awasthi,Sunil Jacob John,Satyananda Panda Con

[復(fù)制鏈接]
樓主: papertrans
41#
發(fā)表于 2025-3-28 16:52:56 | 只看該作者
https://doi.org/10.1007/978-3-030-61817-9-differential equation and linear complementarity problem governing European and American options respectively are discretized using Crank-Nicolson Leap-Frog scheme. In proposed compact finite difference method, the second derivative is approximated by the value of unknowns and their first derivativ
42#
發(fā)表于 2025-3-28 19:43:03 | 只看該作者
https://doi.org/10.1007/978-981-10-8591-8d new exact solutions to the general Sine-Gordon equation. These equations are used in different fields such as electromagnetic waves propagating in semiconductor quantum super lattices, fluxion dynamics in Josephson junctions and nonlinear optics. Different ansatz methods are applied to obtain the
43#
發(fā)表于 2025-3-29 02:31:22 | 只看該作者
44#
發(fā)表于 2025-3-29 06:03:32 | 只看該作者
45#
發(fā)表于 2025-3-29 07:35:49 | 只看該作者
46#
發(fā)表于 2025-3-29 13:33:35 | 只看該作者
47#
發(fā)表于 2025-3-29 15:58:25 | 只看該作者
https://doi.org/10.1007/978-981-10-8600-7y arises in many Grid-enabled large scale applications. This paper introduces fuzzy particle swarm optimization (FPSO) using trapezoidal and pentagonal fuzzy numbers for job scheduling problems. It is to be noted that the Job scheduling on computational grid is an N-P Complete problem, this requires
48#
發(fā)表于 2025-3-29 22:27:23 | 只看該作者
Subramanian Senthilkannan Muthufinite semi-open refinement and studied some characterizations and basic properties of .-paracompact spaces. In this paper we introduce the class of .-metacompact spaces as a generalization of metacompact spaces using point finite semi-open refinements. A topological space . is said to be .-metacomp
49#
發(fā)表于 2025-3-30 03:30:14 | 只看該作者
50#
發(fā)表于 2025-3-30 06:55:56 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 22:04
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
都江堰市| 荣成市| 抚州市| 信宜市| 正安县| 河南省| 彰化县| 怀柔区| 扶风县| 武汉市| 成武县| 五原县| 喀喇| 米林县| 大港区| 临潭县| 新田县| 建昌县| 林西县| 日土县| 东莞市| 霍林郭勒市| 马鞍山市| 时尚| 苏尼特右旗| 肃北| 滁州市| 秀山| 常熟市| 仪陇县| 鄂伦春自治旗| 关岭| 宜昌市| 柞水县| 昔阳县| 宁化县| 蒙城县| 苏尼特右旗| 霍林郭勒市| 和平区| 漾濞|