找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computational Science – ICCS 2021; 21st International C Maciej Paszynski,Dieter Kranzlmüller,Peter M. A. S Conference proceedings 2021 Spri

[復制鏈接]
樓主: Orthosis
51#
發(fā)表于 2025-3-30 11:14:43 | 只看該作者
Cross Entropy Optimization of Constrained Problem Hamiltonians for Quantum Annealingcking Problem. For all three constrained optimization problems we could show a remarkably better solution quality compared to the conventional approach, where the energy penalty values have to be guessed.
52#
發(fā)表于 2025-3-30 13:20:20 | 只看該作者
53#
發(fā)表于 2025-3-30 17:56:38 | 只看該作者
54#
發(fā)表于 2025-3-30 23:50:35 | 只看該作者
55#
發(fā)表于 2025-3-31 01:47:25 | 只看該作者
56#
發(fā)表于 2025-3-31 06:07:49 | 只看該作者
0302-9743 putational Science, ICCS 2021, held in Krakow, Poland, in June 2021.*.The total of 260 full papers and 57 short papers presented in this book set were carefully reviewed and selected from 635 submissions. 48 full and 14 short papers were accepted to the main track from 156 submissions; 212 full and
57#
發(fā)表于 2025-3-31 11:10:35 | 只看該作者
Stavros Kolios,Chrysostomos Stylios at the German Space Operation Center. We explore new approaches in encoding the problem and construct the Grover oracle automatically from the given constraints and independent of the problem size. Our solution is not designed for currently available quantum chips but aims to scale with their growth in the next years.
58#
發(fā)表于 2025-3-31 14:19:39 | 只看該作者
Stavros Kolios,Chrysostomos Styliosersal quantum computer as well as the quantum annealer can handle this kind of problems well. In this paper, we present an application on multimodal container planning. We show how to map this problem to a QUBO problem formulation and how the practical implementation can be done on the quantum annealer produced by D-Wave Systems.
59#
發(fā)表于 2025-3-31 19:37:02 | 只看該作者
60#
發(fā)表于 2025-3-31 22:58:23 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 18:00
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
栾川县| 嘉黎县| 岐山县| 仙居县| 南昌市| 安义县| 宁南县| 镇平县| 鹿泉市| 乌鲁木齐市| 德格县| 富阳市| 泸州市| 张家口市| 双流县| 梁河县| 东平县| 独山县| 巴彦淖尔市| 永兴县| 都江堰市| 惠东县| 永胜县| 思南县| 夹江县| 安多县| 武陟县| 荣成市| 德清县| 晋中市| 东宁县| 循化| 扎赉特旗| 吴江市| 乐都县| 郴州市| 静海县| 名山县| 武定县| 新民市| 江源县|