找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computational Science – ICCS 2019; 19th International C Jo?o M. F. Rodrigues,Pedro J. S. Cardoso,Peter M.A Conference proceedings 2019 Spri

[復(fù)制鏈接]
查看: 48090|回復(fù): 64
樓主
發(fā)表于 2025-3-21 16:07:33 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Computational Science – ICCS 2019
副標(biāo)題19th International C
編輯Jo?o M. F. Rodrigues,Pedro J. S. Cardoso,Peter M.A
視頻videohttp://file.papertrans.cn/234/233083/233083.mp4
叢書名稱Lecture Notes in Computer Science
圖書封面Titlebook: Computational Science – ICCS 2019; 19th International C Jo?o M. F. Rodrigues,Pedro J. S. Cardoso,Peter M.A Conference proceedings 2019 Spri
描述The five-volume set LNCS 11536, 11537, 11538, 11539 and 11540 constitutes the proceedings of the 19th International Conference on Computational Science, ICCS 2019, held in Faro, Portugal, in June 2019..The total of 65 full papers and 168 workshop papers presented in this book set were carefully reviewed and selected from 573 submissions (228 submissions to the main track and 345 submissions to the workshops). The papers were organized in topical sections named:.Part I: ICCS Main Track..Part II: ICCS Main Track; Track of Advances in High-Performance Computational Earth Sciences: Applications and Frameworks; Track of Agent-Based Simulations, Adaptive Algorithms and Solvers; Track of Applications of Matrix Methods in Artificial Intelligence and Machine Learning; Track of Architecture, Languages, Compilation and Hardware Support for Emerging and Heterogeneous Systems..Part III: Track of Biomedical and Bioinformatics Challenges for Computer Science; Track of Classifier Learning from Difficult Data; Track of Computational Finance and Business Intelligence; Track of Computational Optimization, Modelling and Simulation; Track of Computational Science in IoT and Smart Systems..Part IV: Trac
出版日期Conference proceedings 2019
關(guān)鍵詞artificial intelligence; complex systems; computational methods; computational science; computer network
版次1
doihttps://doi.org/10.1007/978-3-030-22741-8
isbn_softcover978-3-030-22740-1
isbn_ebook978-3-030-22741-8Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer Nature Switzerland AG 2019
The information of publication is updating

書目名稱Computational Science – ICCS 2019影響因子(影響力)




書目名稱Computational Science – ICCS 2019影響因子(影響力)學(xué)科排名




書目名稱Computational Science – ICCS 2019網(wǎng)絡(luò)公開度




書目名稱Computational Science – ICCS 2019網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Computational Science – ICCS 2019被引頻次




書目名稱Computational Science – ICCS 2019被引頻次學(xué)科排名




書目名稱Computational Science – ICCS 2019年度引用




書目名稱Computational Science – ICCS 2019年度引用學(xué)科排名




書目名稱Computational Science – ICCS 2019讀者反饋




書目名稱Computational Science – ICCS 2019讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:04:15 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:29:57 | 只看該作者
地板
發(fā)表于 2025-3-22 08:25:23 | 只看該作者
Multi-source Manifold Outlier Detection effectively identified in the affine subspace which is learned through affine combination of shared representations from different sources in the feature-homogeneous space. Comprehensive empirical investigations are presented that confirm the promise of our proposed framework.
5#
發(fā)表于 2025-3-22 11:29:22 | 只看該作者
A Fast ,NN-Based Approach for Time Sensitive Anomaly Detection over Data Streamsthe number of their Nearest Neighbors as time progresses. We use an .-approximation scheme to implement the model of sliding window to compute Nearest Neighbors on the fly. We conduct widely experiments to examine our approach for time sensitive anomaly detection using three real-world data sets. Th
6#
發(fā)表于 2025-3-22 15:02:01 | 只看該作者
Lung Nodule Diagnosis via Deep Learning and Swarm Intelligencelassify cancerous pulmonary nodules successfully in the tomography scans of the Lung Image Database Consortium and Image Database Resource Initiative (LIDC-IDRI). The proposed approach, which consists of training Convolutional Neural Networks using swarm intelligence techniques, proved to be more ef
7#
發(fā)表于 2025-3-22 17:02:15 | 只看該作者
8#
發(fā)表于 2025-3-22 22:53:20 | 只看該作者
2D-Convolution Based Feature Fusion for Cross-Modal Correlation Learninge learning. Specifically, we preliminarily construct a cross-modal feature matrix to fuse the original visual and textural features. Then the 2D-convolutional networks are proposed to reason about inner-group relationships among features across modalities, resulting in fine-grained text-image repres
9#
發(fā)表于 2025-3-23 03:39:59 | 只看該作者
10#
發(fā)表于 2025-3-23 07:57:45 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 21:56
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
多伦县| 新泰市| 邵阳市| 涿鹿县| 青阳县| 灵石县| 泾源县| 兴安盟| 越西县| 黎平县| 万宁市| 临沭县| 同江市| 延边| 渝北区| 河津市| 巫山县| 永清县| 延津县| 广宗县| 方城县| 沾化县| 鹤山市| 盐池县| 育儿| 乌审旗| 济南市| 威信县| 府谷县| 尼木县| 温宿县| 洪泽县| 邹城市| 图们市| 兴宁市| 北票市| 安泽县| 新营市| 肃宁县| 建水县| 依兰县|