找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computational Science and Its Applications – ICCSA 2021; 21st International C Osvaldo Gervasi,Beniamino Murgante,Carmelo Maria T Conference

[復制鏈接]
樓主: Stubborn
11#
發(fā)表于 2025-3-23 12:48:35 | 只看該作者
12#
發(fā)表于 2025-3-23 15:33:35 | 只看該作者
13#
發(fā)表于 2025-3-23 21:29:59 | 只看該作者
14#
發(fā)表于 2025-3-23 22:30:48 | 只看該作者
A Computational Analysis of the Hopmoc Method Applied to the 2-D Advection-Diffusion and Burgers Equers equations. The results delivered by the Hopmoc method compare favorably with the Crank-Nicolson method and an alternating direction implicit scheme when applied to the advection-diffusion equation. The experiments with the 2-D Burgers equation also show that the Hopmoc algorithm provides results in agreement with several existing methods.
15#
發(fā)表于 2025-3-24 05:19:56 | 只看該作者
16#
發(fā)表于 2025-3-24 07:18:17 | 只看該作者
Proof of Some Properties of the Cross Product of Three Vectors in , with?Mathematicaof the theorems constitutes an extension of the Jacobi identity. In some of the proofs, programs based on the paradigms: functional, rule-based and list-based from the Wolfram language, incorporated in Mathematica, are used.
17#
發(fā)表于 2025-3-24 14:31:49 | 只看該作者
A Convergence Study of the 3D Dynamic Diffusion Methodorder to investigate the meshes effects on the convergence, the numerical experiments were carried out on two different sets of meshes: one with structured meshes and the other with unstructured ones. The numerical results show optimal convergence rates in all norms for the dominant convection case.
18#
發(fā)表于 2025-3-24 17:22:11 | 只看該作者
Optimal ,-Methods for Mean-Square Dissipative Stochastic Differential Equationsion. Here we analyze the choice of the optimal parameter . making this restriction less demanding and, at the same time, maximizing the stability interval. A numerical evidence is provided to confirm our theoretical results.
19#
發(fā)表于 2025-3-24 19:09:29 | 只看該作者
20#
發(fā)表于 2025-3-25 01:36:20 | 只看該作者
Conference proceedings 2021ICCSA 2021, which was held in Cagliari, Italy, during September 13 – 16, 2021. The event was organized in a hybrid mode due to the Covid-19 pandemic.The 466 full and 18 short papers presented in these proceedings were carefully reviewed and selected from 1588 submissions. The books cover such topics
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-19 22:49
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
美姑县| 高密市| 腾冲县| 赤城县| 麻江县| 湘乡市| 靖宇县| 衢州市| 许昌县| 罗田县| 广元市| 武隆县| 游戏| 榆社县| 黄骅市| 鄯善县| 扎赉特旗| 东台市| 孝义市| 民丰县| 大悟县| 金秀| 布拖县| 滨海县| 陇南市| 日照市| 麦盖提县| 仙居县| 客服| 双牌县| 农安县| 剑阁县| 屯门区| 东乡| 德令哈市| 芜湖县| 大新县| 平顶山市| 剑川县| 丹江口市| 普兰店市|