找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computational Science and Its Applications - ICCSA 2014; 14th International C Beniamino Murgante,Sanjay Misra,Osvaldo Gervasi Conference pr

[復制鏈接]
樓主: 迅速
11#
發(fā)表于 2025-3-23 11:24:19 | 只看該作者
12#
發(fā)表于 2025-3-23 17:38:06 | 只看該作者
13#
發(fā)表于 2025-3-23 20:35:49 | 只看該作者
On Simplicial Longest Edge Bisection in Lipschitz Global Optimizationen the number of dimensions is greater than two, irregular simplices (not all edges have the same length) may appear with more than one longest edge. In these cases, the first longest edge is usually selected. We study the impact of other selection rule of the longest edge to be bisected next on the
14#
發(fā)表于 2025-3-23 22:57:52 | 只看該作者
15#
發(fā)表于 2025-3-24 04:34:42 | 只看該作者
16#
發(fā)表于 2025-3-24 08:14:32 | 只看該作者
Branch and Bound Based Coordinate Search Filter Algorithm for Nonsmooth Nonconvex Mixed-Integer Nonlnd of problem appears in a wide range of real applications and is very difficult to solve. The difficulties are due to the nonlinearities of the functions in the problem and the integrality restrictions on some variables. When they are nonconvex then they are the most difficult to solve above all. W
17#
發(fā)表于 2025-3-24 12:58:30 | 只看該作者
18#
發(fā)表于 2025-3-24 17:22:25 | 只看該作者
19#
發(fā)表于 2025-3-24 19:44:30 | 只看該作者
On the Properties of General Dual-Feasible Functionsll the functions proposed in the literature are defined only for positive arguments, which restricts considerably their applicability. The characteristics and properties of dual-feasible functions with general domains remain mostly unknown. In this paper, we show that extending these functions to ne
20#
發(fā)表于 2025-3-24 23:10:59 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-10 00:07
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
区。| 抚松县| 通渭县| 梁河县| 泽州县| 仲巴县| 冕宁县| 遂川县| 枝江市| 湖口县| 望城县| 庆阳市| 六安市| 阿克陶县| 沙洋县| 沐川县| 晋城| 周口市| 德惠市| 苍梧县| 宜兰县| 瑞昌市| 天津市| 商水县| 长汀县| 团风县| 米林县| 台湾省| 稷山县| 淮安市| 鄯善县| 曲周县| 临汾市| 林口县| 青阳县| 抚州市| 安福县| 永宁县| 邵阳县| 铜鼓县| 疏附县|