找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Computational Science — ICCS 2004; 4th International Co Marian Bubak,Geert Dick Albada,Jack Dongarra Conference proceedings 2004 Springer-V

[復(fù)制鏈接]
樓主: 回憶錄
41#
發(fā)表于 2025-3-28 18:18:28 | 只看該作者
42#
發(fā)表于 2025-3-28 20:39:58 | 只看該作者
43#
發(fā)表于 2025-3-29 00:59:36 | 只看該作者
44#
發(fā)表于 2025-3-29 07:08:42 | 只看該作者
45#
發(fā)表于 2025-3-29 10:22:12 | 只看該作者
46#
發(fā)表于 2025-3-29 13:44:20 | 只看該作者
LodStrips: Level of Detail Stripsessed to the multiresolution model representation by means of triangle meshes. Nowadays, models that exploit connectivity have been developed, in this paper a multiresolution model that uses triangle strips as primitive is presented. This primitive is used both in the data structure and in the rende
47#
發(fā)表于 2025-3-29 15:34:50 | 只看該作者
48#
發(fā)表于 2025-3-29 20:03:53 | 只看該作者
Using Constraints in Delaunay and Greedy Triangulation for Contour Lines Improvementused, some triangles can be a source of a strange behaviour of the contour lines. In this paper, we show what problems can appear in contour lines when Delaunay or greedy triangulations are used and how the contour lines can be improved using constraints in the triangulation. We improved contour lin
49#
發(fā)表于 2025-3-30 02:59:36 | 只看該作者
50#
發(fā)表于 2025-3-30 07:37:44 | 只看該作者
GA and CHC. Two Evolutionary Algorithms to Solve the Root Identification Problem in Geometric Constre user is only interested in one instance such that, besides fulfilling the geometric constraints, exhibits some additional properties..Selecting a solution instance amounts to selecting a given root every time the geometric constraint solver needs to compute the zeros of a multi valuated function.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-27 01:30
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
炉霍县| 上犹县| 青田县| 墨脱县| 德格县| 调兵山市| 平阴县| 太白县| 班戈县| 湖南省| 开封县| 临夏市| 承德县| 陵水| 蓬莱市| 丰城市| 泾川县| 汨罗市| 射洪县| 讷河市| 奈曼旗| 宿迁市| 梧州市| 基隆市| 浏阳市| 江达县| 定远县| 北川| 景东| 康乐县| 安达市| 泉州市| 乳山市| 万宁市| 吴江市| 蕲春县| 高安市| 和硕县| 湖口县| 汶川县| 龙海市|