找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Computational Probability; Algorithms and Appli John H. Drew,Diane L. Evans,Lawrence M. Leemis Book 2017Latest edition Springer Internation

[復(fù)制鏈接]
樓主: 適婚女孩
21#
發(fā)表于 2025-3-25 03:21:32 | 只看該作者
22#
發(fā)表于 2025-3-25 07:42:58 | 只看該作者
23#
發(fā)表于 2025-3-25 14:24:53 | 只看該作者
24#
發(fā)表于 2025-3-25 16:50:25 | 只看該作者
25#
發(fā)表于 2025-3-25 22:27:12 | 只看該作者
Bayesian ApplicationsThis chapter considers Bayesian applications of APPL. Section?14.1 introduces Bayesian statistics and motivates the use of a computer algebra system to derive posterior distributions. Section?14.2 develops algorithms in the case of a single unknown parameter. Section?14.3 develops algorithms in the case of multiple unknown parameters.
26#
發(fā)表于 2025-3-26 03:37:05 | 只看該作者
Other ApplicationsThis chapter contains miscellaneous computational probability applications. Section?. concerns algorithms for calculating the probability distribution of the longest path of a series-parallel stochastic activity network with continuous activity durations.
27#
發(fā)表于 2025-3-26 05:30:48 | 只看該作者
Data Structures and Simple Algorithmsy are defined with a somewhat simpler data structure than that for discrete random variables. The development described here gives a probabilist the ability to automate the instantiation and processing of continuous random variables—key elements of computational probability.
28#
發(fā)表于 2025-3-26 09:06:36 | 只看該作者
Transformations of Random Variablesheorem from Casella and Berger [16] for many–to–1 transformations, we consider more general univariate transformations. Specifically, the transformation can range from 1–to–1 to many–to–1 on various subsets of the support of the random variable of interest. We also present an implementation of the theorem in APPL and present four examples.
29#
發(fā)表于 2025-3-26 14:47:07 | 只看該作者
Data Structures and Simple Algorithmsdiscrete random variables. The first section will show that the nature of the support of discrete random variables makes the data structures required much more complicated than for continuous random variables.
30#
發(fā)表于 2025-3-26 17:03:38 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 21:58
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
临沧市| 鸡泽县| 乐昌市| 永安市| 旺苍县| 瑞金市| 盘山县| 留坝县| 凤冈县| 株洲县| 安平县| 临沧市| 磐石市| 册亨县| 淮北市| 南宁市| 兴安盟| 遂溪县| 乌审旗| 阿瓦提县| 五河县| 巫山县| 衡水市| 鹤峰县| 康马县| 绍兴市| 当雄县| 永定县| 祁连县| 河西区| 平和县| 新田县| 澜沧| 林西县| 平乡县| 永嘉县| 吴川市| 日照市| 阳春市| 银川市| 昌图县|