找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Computational Physics; An Introduction Franz J. Vesely Book 1994 Springer-Verlag US 1994 computational physics.differential equation.mechan

[復(fù)制鏈接]
查看: 34777|回復(fù): 41
樓主
發(fā)表于 2025-3-21 17:41:01 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Computational Physics
副標(biāo)題An Introduction
編輯Franz J. Vesely
視頻videohttp://file.papertrans.cn/233/232896/232896.mp4
圖書封面Titlebook: Computational Physics; An Introduction Franz J. Vesely Book 1994 Springer-Verlag US 1994 computational physics.differential equation.mechan
描述Author Franz J. Vesely offers students an introductory text oncomputational physics, providing them with the important basicnumerical/computational techniques. His unique text sets itself apartfrom others by focusing on specific problems of computationalphysics. The author also provides a selection of modern fields ofresearch. Students will benefit from the appendixes which offer ashort description of some properties of computing and machines andoutline the technique of ‘Fast Fourier Transformation.‘
出版日期Book 1994
關(guān)鍵詞computational physics; differential equation; mechanics; partial differential equation; statistical mech
版次1
doihttps://doi.org/10.1007/978-1-4757-2307-6
isbn_ebook978-1-4757-2307-6
copyrightSpringer-Verlag US 1994
The information of publication is updating

書目名稱Computational Physics影響因子(影響力)




書目名稱Computational Physics影響因子(影響力)學(xué)科排名




書目名稱Computational Physics網(wǎng)絡(luò)公開度




書目名稱Computational Physics網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Computational Physics被引頻次




書目名稱Computational Physics被引頻次學(xué)科排名




書目名稱Computational Physics年度引用




書目名稱Computational Physics年度引用學(xué)科排名




書目名稱Computational Physics讀者反饋




書目名稱Computational Physics讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-22 00:05:21 | 只看該作者
Ordinary Differential Equationsat are important in physics are of first or second order, which means that they contain no higher derivatives such as . or the like. As a rule one may rewrite them in explicit form, .. Sometimes it is profitable to reformulate a given second-order DE as a system of two coupled first-order DEs. Thus,
板凳
發(fā)表于 2025-3-22 03:19:05 | 只看該作者
Simulation and Statistical Mechanicsperties of matter in terms of the microscopic kinetics and dynamics of molecules. Since the simultaneous motion of a large number of interacting particles is not tractable by analytical means, statistical mechanics has always been obliged to introduce additional, simplifying assumptions whose effect
地板
發(fā)表于 2025-3-22 07:27:34 | 只看該作者
5#
發(fā)表于 2025-3-22 10:06:52 | 只看該作者
Book 1994of modern fields ofresearch. Students will benefit from the appendixes which offer ashort description of some properties of computing and machines andoutline the technique of ‘Fast Fourier Transformation.‘
6#
發(fā)表于 2025-3-22 16:39:05 | 只看該作者
selection of modern fields ofresearch. Students will benefit from the appendixes which offer ashort description of some properties of computing and machines andoutline the technique of ‘Fast Fourier Transformation.‘978-1-4757-2307-6
7#
發(fā)表于 2025-3-22 20:34:57 | 只看該作者
8#
發(fā)表于 2025-3-23 00:42:17 | 只看該作者
9#
發(fā)表于 2025-3-23 02:44:38 | 只看該作者
ational techniques. His unique text sets itself apartfrom others by focusing on specific problems of computationalphysics. The author also provides a selection of modern fields ofresearch. Students will benefit from the appendixes which offer ashort description of some properties of computing and ma
10#
發(fā)表于 2025-3-23 08:13:55 | 只看該作者
Ordinary Differential Equations the equation of motion for the harmonic oscillator, . ,may be transformed (introducing the auxiliary function .(.)) into the system . Another way of writing this is . As we can see, . and ../. occur only to first power: we are dealing with a . differential equation.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-18 04:23
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
许昌市| 淅川县| 当涂县| 邵阳县| 东城区| 宁河县| 东安县| 贵州省| 固始县| 奉贤区| 宜州市| 名山县| 勐海县| 惠水县| 宿州市| 平遥县| 黄大仙区| 安平县| 尉犁县| 汶川县| 福建省| 河津市| 崇义县| 凌源市| 清新县| 承德市| 泰和县| 惠东县| 民勤县| 奈曼旗| 南召县| 沙坪坝区| 泗洪县| 潮安县| 文昌市| 黄平县| 墨江| 阿合奇县| 梅河口市| 光山县| 庆安县|