找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computational Methods in Systems Biology; 17th International C Luca Bortolussi,Guido Sanguinetti Conference proceedings 2019 Springer Natur

[復制鏈接]
樓主: formation
11#
發(fā)表于 2025-3-23 13:27:42 | 只看該作者
12#
發(fā)表于 2025-3-23 14:05:14 | 只看該作者
A Large-Scale Assessment of Exact Model Reduction in the BioModels Repositoryon based on ordinary differential equations and continuous-time Markov chains, respectively. In most cases, these models do not enjoy analytical solution, thus typically requiring expensive computational methods based on numerical solvers or stochastic simulations. Exact model reduction techniques c
13#
發(fā)表于 2025-3-23 18:57:30 | 只看該作者
Computing Difference Abstractions of Metabolic Networks Under Kinetic Constraints prediction precision, however, depends heavily on which heuristics are applied in order to add linear consequences of the steady state equations of the metabolic network. In this paper we ask the question whether such heuristics can be avoided while obtaining the highest possible precision. This le
14#
發(fā)表于 2025-3-23 22:46:03 | 只看該作者
BRE:IN - A Backend for Reasoning About Interaction Networks with Temporal Logicby the RE:IN tool, where an Abstract Boolean Network (ABN) specifies partial information about the network topology, and experimental observations are used to constrain the ABN, allowing to synthesize consistent models, or prove that no consistent model exists. RE:IN has been used successfully to de
15#
發(fā)表于 2025-3-24 02:45:07 | 只看該作者
16#
發(fā)表于 2025-3-24 10:19:45 | 只看該作者
https://doi.org/10.1007/978-3-319-72532-1nstraints on the statistical moments of the stochastic process to reduce the estimators’ variances. We develop an algorithm that selects appropriate control variates in an on-line fashion and demonstrate the efficiency of our approach on several case studies.
17#
發(fā)表于 2025-3-24 12:01:04 | 只看該作者
https://doi.org/10.1057/9780230510975lt in varying glycemic control. Such logical characterizations can provide feedback to clinicians and their patients about behavioral changes that patients may implement to improve T1D control. We present both individual- and population-level behavior patterns learned from a clinical dataset of 21 T1D patients.
18#
發(fā)表于 2025-3-24 15:49:24 | 只看該作者
19#
發(fā)表于 2025-3-24 22:57:49 | 只看該作者
Control Variates for Stochastic Simulation of Chemical Reaction Networksnstraints on the statistical moments of the stochastic process to reduce the estimators’ variances. We develop an algorithm that selects appropriate control variates in an on-line fashion and demonstrate the efficiency of our approach on several case studies.
20#
發(fā)表于 2025-3-25 00:58:09 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 16:24
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
镇平县| 大城县| 株洲市| 武冈市| 绵竹市| 沧源| 磐石市| 西丰县| 长汀县| 和平区| 靖宇县| 商丘市| 福建省| 河源市| 琼海市| 确山县| 桐城市| 定兴县| 大厂| 临洮县| 通渭县| 南丰县| 涟水县| 扎兰屯市| 无极县| 宜阳县| 康保县| 南靖县| 阿克陶县| 湘乡市| 潞西市| 岱山县| 丘北县| 濮阳县| 武定县| 开远市| 毕节市| 昭苏县| 乌海市| 广平县| 西乌珠穆沁旗|