找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computational Methods in Systems Biology; 18th International C Alessandro Abate,Tatjana Petrov,Verena Wolf Conference proceedings 2020 Spri

[復制鏈接]
樓主: frustrate
41#
發(fā)表于 2025-3-28 14:58:28 | 只看該作者
Choosing, and Being, a Good Mentornguages and concurrency, and 2) mean field approximations (MFAs), a collection of approximation techniques ubiquitous in the study of complex dynamics. Using existing tools from algebraic graph rewriting, as well as new ones, we build a framework which generates rate equations for stochastic GTSs an
42#
發(fā)表于 2025-3-28 21:02:37 | 只看該作者
C. Max Schmidt M.D., Ph.D., MBA molecule fluctuates in time due to the random occurrence of production and degradation reactions. Here we consider a stochastic model for a self-regulating transcription factor whose lifespan (or time till degradation) follows a general distribution modelled as per a multi-dimensional phase-type pr
43#
發(fā)表于 2025-3-29 00:56:22 | 只看該作者
44#
發(fā)表于 2025-3-29 05:05:09 | 只看該作者
https://doi.org/10.1007/978-0-85729-313-8ation principles are abstracted away to focus on the main dynamical properties of the network structure. In their interpretation by ordinary differential equations, we say that a CRN with distinguished input and output species computes a positive real function ., if for any initial concentration . o
45#
發(fā)表于 2025-3-29 07:47:52 | 只看該作者
Writing a Grant/Obtaining Funding When the variable is exactly constant, one talks about absolute concentration robustness (ACR). A dual and equally important property is ., which means that the system has multiple steady states and possible outputs, at constant parameters. We propose a new computational method based on interval te
46#
發(fā)表于 2025-3-29 14:47:05 | 只看該作者
47#
發(fā)表于 2025-3-29 17:45:55 | 只看該作者
48#
發(fā)表于 2025-3-29 21:28:45 | 只看該作者
49#
發(fā)表于 2025-3-30 00:06:02 | 只看該作者
50#
發(fā)表于 2025-3-30 07:40:05 | 只看該作者
https://doi.org/10.1007/978-3-030-14644-3states and transitions. For biological systems, it becomes a challenging task to compare such mathematical objects with biological knowledge, or interpret the transitions inside an attractor in terms of the sequence of events in a biological cycle. A recent methodology generates summary graphs to he
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 19:44
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
元江| 邵阳县| 蓬莱市| 武陟县| 安溪县| 南城县| 襄垣县| 寻乌县| 屏东市| 历史| 三明市| 庄浪县| 宣武区| 青铜峡市| 蓬溪县| 石景山区| 英超| 兴宁市| 英山县| 博爱县| 社旗县| 鄂州市| 崇州市| 綦江县| 宾阳县| 诏安县| 鸡东县| 洞口县| 皋兰县| 苗栗县| 龙井市| 九龙城区| 改则县| 龙南县| 延长县| 开原市| 遂溪县| 绥德县| 吉木萨尔县| 花莲市| 门源|