找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computational Methods in Decision-Making, Economics and Finance; Erricos John Kontoghiorghes,Berc Rustem,Stavros Si Book 2002 Springer Sci

[復制鏈接]
樓主: Ensign
31#
發(fā)表于 2025-3-26 22:37:06 | 只看該作者
32#
發(fā)表于 2025-3-27 01:36:18 | 只看該作者
https://doi.org/10.1007/978-94-017-3179-9e hedging of these contracts. In particular, we present results for the heuristic use of the reset feature; for example, locking in whenever the underlying asset value has risen by 15% as recently suggested by a Canadian Institute of Actuaries task force on segregated funds.
33#
發(fā)表于 2025-3-27 07:54:02 | 只看該作者
34#
發(fā)表于 2025-3-27 12:30:07 | 只看該作者
Multistage Stochastic Programming in Computational Financeario tree. The mean or variance of total wealth at the end of the planning horizon can be optimised by solving either a linear stochastic program or a quadratic stochastic program, respectively; solution of many almost identical quadratic stochastic programs yields points describing the Markowitz ef
35#
發(fā)表于 2025-3-27 17:21:40 | 只看該作者
36#
發(fā)表于 2025-3-27 20:42:12 | 只看該作者
Scenario Specification for Robust Portfolio Analysislysis, or min-max. Robustness is ensured by considering the the optimal strategy in view of multiple scenarios generated and evaluating the portfolio corresponding to the best performance, simultaneously with the worst-case scenario. The robust property follows from the fact that the resulting strat
37#
發(fā)表于 2025-3-28 00:09:37 | 只看該作者
38#
發(fā)表于 2025-3-28 03:07:25 | 只看該作者
39#
發(fā)表于 2025-3-28 08:27:54 | 只看該作者
Maxmin Portfolios in Models Where Immunization is Not Feasibleunization by analyzing and computing maxmin portfolios in models where complete immunization is not feasible. These models are important because they permit many different shifts on interest rates and do not lead to the existence of arbitrage. Maxmin portfolios are characterized by saddle point cond
40#
發(fā)表于 2025-3-28 12:32:06 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 16:48
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
邵武市| 石首市| 娄烦县| 家居| 额尔古纳市| 怀柔区| 高唐县| 元朗区| 公安县| 潜江市| 洛扎县| 永定县| 清镇市| 井陉县| 和硕县| 司法| 绥中县| 连城县| 汤原县| 扎赉特旗| 东安县| 曲阜市| 金溪县| 东丰县| 嘉义市| 济阳县| 偏关县| 轮台县| 安仁县| 侯马市| 昌邑市| 永福县| 台前县| 察雅县| 临澧县| 当阳市| 思茅市| 古交市| 平度市| 芜湖县| 昆山市|