找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computational Methods in Decision-Making, Economics and Finance; Erricos John Kontoghiorghes,Berc Rustem,Stavros Si Book 2002 Springer Sci

[復(fù)制鏈接]
樓主: Ensign
31#
發(fā)表于 2025-3-26 22:37:06 | 只看該作者
32#
發(fā)表于 2025-3-27 01:36:18 | 只看該作者
https://doi.org/10.1007/978-94-017-3179-9e hedging of these contracts. In particular, we present results for the heuristic use of the reset feature; for example, locking in whenever the underlying asset value has risen by 15% as recently suggested by a Canadian Institute of Actuaries task force on segregated funds.
33#
發(fā)表于 2025-3-27 07:54:02 | 只看該作者
34#
發(fā)表于 2025-3-27 12:30:07 | 只看該作者
Multistage Stochastic Programming in Computational Financeario tree. The mean or variance of total wealth at the end of the planning horizon can be optimised by solving either a linear stochastic program or a quadratic stochastic program, respectively; solution of many almost identical quadratic stochastic programs yields points describing the Markowitz ef
35#
發(fā)表于 2025-3-27 17:21:40 | 只看該作者
36#
發(fā)表于 2025-3-27 20:42:12 | 只看該作者
Scenario Specification for Robust Portfolio Analysislysis, or min-max. Robustness is ensured by considering the the optimal strategy in view of multiple scenarios generated and evaluating the portfolio corresponding to the best performance, simultaneously with the worst-case scenario. The robust property follows from the fact that the resulting strat
37#
發(fā)表于 2025-3-28 00:09:37 | 只看該作者
38#
發(fā)表于 2025-3-28 03:07:25 | 只看該作者
39#
發(fā)表于 2025-3-28 08:27:54 | 只看該作者
Maxmin Portfolios in Models Where Immunization is Not Feasibleunization by analyzing and computing maxmin portfolios in models where complete immunization is not feasible. These models are important because they permit many different shifts on interest rates and do not lead to the existence of arbitrage. Maxmin portfolios are characterized by saddle point cond
40#
發(fā)表于 2025-3-28 12:32:06 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 20:09
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
榕江县| 嘉祥县| 镇沅| 遂宁市| 新疆| 山东| 铁岭县| 大冶市| 靖西县| 陇西县| 黄龙县| 青川县| 兰西县| 五峰| 犍为县| 桐庐县| 怀来县| 大姚县| 泰州市| 普陀区| 会泽县| 郎溪县| 白河县| 霍山县| 晋宁县| 卓资县| 海丰县| 闻喜县| 封丘县| 沙田区| 西乌珠穆沁旗| 老河口市| 政和县| 天水市| 吉林省| 平舆县| 邻水| 合山市| 年辖:市辖区| 平泉县| 庄浪县|