找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computational Methods in Bifurcation Theory and Dissipative Structures; M. Kubí?ek,M. Marek Book 1983 Springer Science+Business Media New

[復(fù)制鏈接]
樓主: energy
11#
發(fā)表于 2025-3-23 12:14:15 | 只看該作者
12#
發(fā)表于 2025-3-23 16:52:51 | 只看該作者
https://doi.org/10.1007/978-3-642-02943-1aspects of the study of such phenomena is the problem of describing self-organization, i.e., detailed study of stationary and/or time-dependent states evolving with changes of characteristic parameters. We can recognize two main approaches in the description of such systems—deterministic and stochas
13#
發(fā)表于 2025-3-23 19:09:22 | 只看該作者
Substances Containing C10H16...Zn mainly over the past 10 years by our research group. Relations among specific procedures are schematically shown in Fig. 5.1. Every procedure is denoted by its corresponding section number (or numbers when both LPS and DPS are involved). An increasing number of papers on the numerical methods discu
14#
發(fā)表于 2025-3-24 01:02:35 | 只看該作者
15#
發(fā)表于 2025-3-24 03:17:24 | 只看該作者
16#
發(fā)表于 2025-3-24 07:46:41 | 只看該作者
17#
發(fā)表于 2025-3-24 14:23:28 | 只看該作者
18#
發(fā)表于 2025-3-24 17:11:56 | 只看該作者
Multiplicity and Stability in Lumped-Parameter Systems (LPS),Differentiation of dynamic systems into lumped-parameter systems (LPS) and distributed-parameter systems (DPS) was discussed in Section 1.3. The phase space of LPS is a finite-dimensional space. Let us consider .-dimen-sional Euclidean space.
19#
發(fā)表于 2025-3-24 20:18:16 | 只看該作者
20#
發(fā)表于 2025-3-24 23:45:35 | 只看該作者
Development of Quasi-stationary Patterns with Changing Parameter,Let us consider a dynamical system which depends on a parameter .: . with specified initial conditions. Up until now, we have considered the parameter . to be fixed and independent of time ..
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 11:12
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
志丹县| 双江| 陇川县| 墨江| 张家港市| 峡江县| 工布江达县| 信丰县| 和硕县| 通许县| 山阴县| 建水县| 杨浦区| 会泽县| 武强县| 浦城县| 清河县| 嫩江县| 寿光市| 黔江区| 环江| 宁远县| 蓬安县| 渭源县| 永济市| 宁国市| 兴城市| 岳阳市| 滨海县| 龙海市| 高阳县| 巴楚县| 永宁县| 台湾省| 措勤县| 屏山县| 湾仔区| 五峰| 阳新县| 灵石县| 临沭县|