找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computational Methods in Bifurcation Theory and Dissipative Structures; M. Kubí?ek,M. Marek Book 1983 Springer Science+Business Media New

[復(fù)制鏈接]
樓主: energy
11#
發(fā)表于 2025-3-23 12:14:15 | 只看該作者
12#
發(fā)表于 2025-3-23 16:52:51 | 只看該作者
https://doi.org/10.1007/978-3-642-02943-1aspects of the study of such phenomena is the problem of describing self-organization, i.e., detailed study of stationary and/or time-dependent states evolving with changes of characteristic parameters. We can recognize two main approaches in the description of such systems—deterministic and stochas
13#
發(fā)表于 2025-3-23 19:09:22 | 只看該作者
Substances Containing C10H16...Zn mainly over the past 10 years by our research group. Relations among specific procedures are schematically shown in Fig. 5.1. Every procedure is denoted by its corresponding section number (or numbers when both LPS and DPS are involved). An increasing number of papers on the numerical methods discu
14#
發(fā)表于 2025-3-24 01:02:35 | 只看該作者
15#
發(fā)表于 2025-3-24 03:17:24 | 只看該作者
16#
發(fā)表于 2025-3-24 07:46:41 | 只看該作者
17#
發(fā)表于 2025-3-24 14:23:28 | 只看該作者
18#
發(fā)表于 2025-3-24 17:11:56 | 只看該作者
Multiplicity and Stability in Lumped-Parameter Systems (LPS),Differentiation of dynamic systems into lumped-parameter systems (LPS) and distributed-parameter systems (DPS) was discussed in Section 1.3. The phase space of LPS is a finite-dimensional space. Let us consider .-dimen-sional Euclidean space.
19#
發(fā)表于 2025-3-24 20:18:16 | 只看該作者
20#
發(fā)表于 2025-3-24 23:45:35 | 只看該作者
Development of Quasi-stationary Patterns with Changing Parameter,Let us consider a dynamical system which depends on a parameter .: . with specified initial conditions. Up until now, we have considered the parameter . to be fixed and independent of time ..
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 11:12
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
普兰店市| 清苑县| 藁城市| 遵义市| 济阳县| 宜州市| 巴里| 新丰县| 修文县| 旺苍县| 昭平县| 英吉沙县| 岗巴县| 大田县| 贵德县| 西安市| 新昌县| 泸州市| 古丈县| 科技| 崇仁县| 黄龙县| 临安市| 隆德县| 公主岭市| 德钦县| 泰安市| 营山县| 环江| 富平县| 尼玛县| 阿勒泰市| 宣城市| 临澧县| 铜川市| 红原县| 健康| 游戏| 康平县| 鄱阳县| 新源县|