找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computational Methods for Molecular Imaging; Fei Gao,Kuangyu Shi,Shuo Li Book 2015 Springer International Publishing Switzerland 2015 Clin

[復制鏈接]
樓主: Eschew
41#
發(fā)表于 2025-3-28 15:01:36 | 只看該作者
Gradient Projection for Regularized Cryo-Electron Tomographic Reconstructionte. The technique consists of acquiring many two-dimensional (2D) projections of the structure under scrutiny at various tilt angles under cryogenic conditions. The 3D structure is recovered through a number of steps including projection alignment and reconstruction. However, the resolution currentl
42#
發(fā)表于 2025-3-28 20:57:18 | 只看該作者
43#
發(fā)表于 2025-3-29 01:06:48 | 只看該作者
44#
發(fā)表于 2025-3-29 05:45:19 | 只看該作者
45#
發(fā)表于 2025-3-29 08:57:47 | 只看該作者
Time-Activity Curve Based Sinogram Decomposition for Streak Artifacts Reduction in Dynamic PET Reconsignals such as bladder than other areas. This is achieved by a clustering of temporal development into comparable signal levels and decomposition in projection space accordingly. The results show a significant improvement in quality of reconstructed images as well as an improvement in quantificatio
46#
發(fā)表于 2025-3-29 13:55:36 | 只看該作者
4-D PET-MR with Volumetric Navigators and Compressed Sensingta. However, the acquisition of high-resolution MR and PET images requires long scanning times, therefore movement of the subject during the acquisition deteriorates both the PET and the MR images. In this work we have developed an approach for tightly integrated PET-MR imaging, making use of volume
47#
發(fā)表于 2025-3-29 17:34:49 | 只看該作者
Robust Feature Selection to Predict Lung Tumor Recurrence a predictive feature subset from a series of spatiotemporal PET image characteristics, including SUV-based and texture features, in order to predict lung tumor recurrence one year after treatment. To overcome the small sample size, class imbalance problem, we propose a hierarchical forward selectio
48#
發(fā)表于 2025-3-29 21:54:25 | 只看該作者
49#
發(fā)表于 2025-3-30 01:21:26 | 只看該作者
50#
發(fā)表于 2025-3-30 04:44:55 | 只看該作者
Generation of MR-Based Attenuation Correction Map of PET Images in the Brain Employing Joint Segmentdose, and truly simultaneous imaging capabilities. However, the lack of an accurate method for generation of MR-based attenuation map (.-map) at 511 keV is hampering further development and wider acceptance of this technology. Here, we present a new method for the MR-based attenuation correction map
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2026-1-27 14:20
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
海城市| 彰化市| 微山县| 丹江口市| 芒康县| 信阳市| 太仓市| 建平县| 扎囊县| 闽侯县| 浪卡子县| 广饶县| 青川县| 汾阳市| 松滋市| 改则县| 龙海市| 兴文县| 屏边| 洮南市| 阳春市| 黑龙江省| 咸丰县| 宜良县| 潞城市| 开化县| 石首市| 乐平市| 永嘉县| 莲花县| 三门县| 友谊县| 黄大仙区| 宾阳县| 化州市| 陵川县| 义乌市| 尤溪县| 冕宁县| 安乡县| 稻城县|