找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computational Methods for Linear Integral Equations; Prem K. Kythe,Pratap Puri Book 2002 Birkh?user Boston 2002 Integral equation.Integral

[復制鏈接]
樓主: cherub
31#
發(fā)表于 2025-3-26 23:50:38 | 只看該作者
https://doi.org/10.1007/978-3-540-85273-5uations. proofs most of the resets can be found in standard textbooks on integral equa tions, real and complex analysis, integral transforms, and numerical analysis. The notation used in this book, although standard, is also presented for clarification.
32#
發(fā)表于 2025-3-27 03:07:37 | 只看該作者
33#
發(fā)表于 2025-3-27 05:36:05 | 只看該作者
34#
發(fā)表于 2025-3-27 12:26:55 | 只看該作者
Helmut Laux,Matthias M. Schabelnherent ill-posedness. This property makes their numerical evaluation difficult; different tecniques are needed to compute such solutions. We shall discuss some of the well-known methods in this chapter.
35#
發(fā)表于 2025-3-27 16:51:15 | 只看該作者
Marktbewertung im Mehrperioden-Fall equations the free term .(.) is the Laplace transform of an unknown function .(.), 0 < . < ∞, where . is the variable of the transform. In this chapter we present different numerical methods for computing the function .(.) since it is known that this problem is ill-posed.
36#
發(fā)表于 2025-3-27 20:13:13 | 只看該作者
Introduction,uations. proofs most of the resets can be found in standard textbooks on integral equa tions, real and complex analysis, integral transforms, and numerical analysis. The notation used in this book, although standard, is also presented for clarification.
37#
發(fā)表于 2025-3-28 00:14:38 | 只看該作者
38#
發(fā)表于 2025-3-28 04:49:23 | 只看該作者
39#
發(fā)表于 2025-3-28 07:41:45 | 只看該作者
40#
發(fā)表于 2025-3-28 13:24:57 | 只看該作者
Inversion of Laplace Transforms, equations the free term .(.) is the Laplace transform of an unknown function .(.), 0 < . < ∞, where . is the variable of the transform. In this chapter we present different numerical methods for computing the function .(.) since it is known that this problem is ill-posed.
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-30 08:07
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
永年县| 连南| 鄯善县| 扎赉特旗| 崇义县| 武隆县| 且末县| 岳阳县| 威宁| 陆良县| 西林县| 缙云县| 五常市| 靖州| 福安市| 灌南县| 三都| 嵊州市| 南昌县| 平昌县| 明溪县| 泸定县| 陈巴尔虎旗| 永吉县| 绵阳市| 延寿县| 京山县| 杭锦旗| 沙坪坝区| 丁青县| 奉贤区| 栖霞市| 德江县| 新竹县| 永济市| 阳信县| 尼玛县| 大名县| 晋城| 南靖县| 资兴市|