找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Computational Methods for General Sparse Matrices; Zahari Zlatev Book 1991 Springer Science+Business Media B.V. 1991 Mathematica.Matrix.al

[復(fù)制鏈接]
樓主: 手套
41#
發(fā)表于 2025-3-28 15:11:08 | 只看該作者
https://doi.org/10.1057/9780230613188umns (Q.Q=I, I being the identity matrix in R.), D ∈ .. is a diagonal matrix and R ∈ .. is an upper triangular matrix. Very often matrix D is the identity matrix and if this is so, then (12.1) is reduced to
42#
發(fā)表于 2025-3-28 21:37:30 | 只看該作者
https://doi.org/10.1057/9780230613188 However, the classical manner of exploiting sparsity (see . is in fact used in the calculations because the drop-tolerance used is so small (T=10.) that practically no non-zero elements are removed during the decomposition process.
43#
發(fā)表于 2025-3-29 01:34:51 | 只看該作者
44#
發(fā)表于 2025-3-29 05:02:18 | 只看該作者
Preconditioned Conjugate Gradients for Givens Plane Rotations,trix Q ∈ .. with orthonormal columns (see .) and if the calculations are performed without rounding errors, then C=I and, thus, the CG algorithm converges in one iteration only. Even if the orthogonalization is carried out with rounding errors, the matrix C is normally close to the identity matrix I
45#
發(fā)表于 2025-3-29 08:33:18 | 只看該作者
https://doi.org/10.1007/978-3-319-26914-6ents) of the system by Gaussian elimination, .. This is so because the factorization process can be optimized quite well, while it is difficult to improve very much the performance of the back solver. The factorization time is by far the most expensive part when the . is used, while very often the s
46#
發(fā)表于 2025-3-29 13:03:38 | 只看該作者
https://doi.org/10.1007/978-1-349-73900-4trix Q ∈ .. with orthonormal columns (see .) and if the calculations are performed without rounding errors, then C=I and, thus, the CG algorithm converges in one iteration only. Even if the orthogonalization is carried out with rounding errors, the matrix C is normally close to the identity matrix I
47#
發(fā)表于 2025-3-29 19:03:37 | 只看該作者
48#
發(fā)表于 2025-3-29 20:06:04 | 只看該作者
Pivotal Strategies for Gaussian Elimination,sed in the solution of linear algebraic equations with general sparse matrices, then the pivotal strategy plays a very important role. The pivotal strategy is a powerful tool that can efficiently be used during the efforts to preserve as well as possible the sparsity of the original matrix and, at t
49#
發(fā)表于 2025-3-30 00:25:20 | 只看該作者
Use of Iterative Refinement in the GE Process, whose coefficient matrices are ., then the accuracy of the results will usually be greater than the accuracy obtained by the use of Gaussian elimination without iterative refinement (.). However, both more storage (about 100% because a copy of matrix A is needed) and more computing time (some extra
50#
發(fā)表于 2025-3-30 05:30:19 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 09:44
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
樟树市| 大方县| 竹溪县| 绍兴市| 阳新县| 赤峰市| 桂平市| 马龙县| 文山县| 英德市| 师宗县| 莆田市| 临猗县| 额尔古纳市| 敦化市| 漾濞| 抚州市| 洮南市| 山西省| 都兰县| 甘泉县| 衡阳市| 延吉市| 渝中区| 绥宁县| 义马市| 太仆寺旗| 高碑店市| 新化县| 义乌市| 松桃| 渑池县| 武功县| 颍上县| 临澧县| 大石桥市| 蓝田县| 三门峡市| 宝坻区| 贞丰县| 本溪市|