找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computational Methods for General Sparse Matrices; Zahari Zlatev Book 1991 Springer Science+Business Media B.V. 1991 Mathematica.Matrix.al

[復(fù)制鏈接]
樓主: 手套
41#
發(fā)表于 2025-3-28 15:11:08 | 只看該作者
https://doi.org/10.1057/9780230613188umns (Q.Q=I, I being the identity matrix in R.), D ∈ .. is a diagonal matrix and R ∈ .. is an upper triangular matrix. Very often matrix D is the identity matrix and if this is so, then (12.1) is reduced to
42#
發(fā)表于 2025-3-28 21:37:30 | 只看該作者
https://doi.org/10.1057/9780230613188 However, the classical manner of exploiting sparsity (see . is in fact used in the calculations because the drop-tolerance used is so small (T=10.) that practically no non-zero elements are removed during the decomposition process.
43#
發(fā)表于 2025-3-29 01:34:51 | 只看該作者
44#
發(fā)表于 2025-3-29 05:02:18 | 只看該作者
Preconditioned Conjugate Gradients for Givens Plane Rotations,trix Q ∈ .. with orthonormal columns (see .) and if the calculations are performed without rounding errors, then C=I and, thus, the CG algorithm converges in one iteration only. Even if the orthogonalization is carried out with rounding errors, the matrix C is normally close to the identity matrix I
45#
發(fā)表于 2025-3-29 08:33:18 | 只看該作者
https://doi.org/10.1007/978-3-319-26914-6ents) of the system by Gaussian elimination, .. This is so because the factorization process can be optimized quite well, while it is difficult to improve very much the performance of the back solver. The factorization time is by far the most expensive part when the . is used, while very often the s
46#
發(fā)表于 2025-3-29 13:03:38 | 只看該作者
https://doi.org/10.1007/978-1-349-73900-4trix Q ∈ .. with orthonormal columns (see .) and if the calculations are performed without rounding errors, then C=I and, thus, the CG algorithm converges in one iteration only. Even if the orthogonalization is carried out with rounding errors, the matrix C is normally close to the identity matrix I
47#
發(fā)表于 2025-3-29 19:03:37 | 只看該作者
48#
發(fā)表于 2025-3-29 20:06:04 | 只看該作者
Pivotal Strategies for Gaussian Elimination,sed in the solution of linear algebraic equations with general sparse matrices, then the pivotal strategy plays a very important role. The pivotal strategy is a powerful tool that can efficiently be used during the efforts to preserve as well as possible the sparsity of the original matrix and, at t
49#
發(fā)表于 2025-3-30 00:25:20 | 只看該作者
Use of Iterative Refinement in the GE Process, whose coefficient matrices are ., then the accuracy of the results will usually be greater than the accuracy obtained by the use of Gaussian elimination without iterative refinement (.). However, both more storage (about 100% because a copy of matrix A is needed) and more computing time (some extra
50#
發(fā)表于 2025-3-30 05:30:19 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 11:16
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
石台县| 天长市| 定襄县| 延边| 龙井市| 乌拉特后旗| 海淀区| 旺苍县| 即墨市| 鹤山市| 崇明县| 静安区| 宜城市| 清新县| 砚山县| 台北市| 盘山县| 河津市| 花莲市| 康马县| 化州市| 淳化县| 射洪县| 黄骅市| 乌恰县| 青川县| 玉田县| 金堂县| 塔河县| 永宁县| 云安县| 六枝特区| 罗平县| 定襄县| 芜湖市| 延庆县| 开江县| 伊金霍洛旗| 宜宾市| 黎城县| 上虞市|