找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Computational Methods for Deep Learning; Theoretic, Practice Wei Qi Yan Textbook 20211st edition The Editor(s) (if applicable) and The Aut

[復(fù)制鏈接]
查看: 40222|回復(fù): 44
樓主
發(fā)表于 2025-3-21 17:18:07 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱Computational Methods for Deep Learning
副標(biāo)題Theoretic, Practice
編輯Wei Qi Yan
視頻videohttp://file.papertrans.cn/233/232712/232712.mp4
概述Introduce deep learning from mathematical viewpoint.Review mathematical methods in Bachelor and Master’s degree level.Detail mathematical approaches to resolve deep learning problems.Provide methodolo
叢書(shū)名稱Texts in Computer Science
圖書(shū)封面Titlebook: Computational Methods for Deep Learning; Theoretic, Practice  Wei Qi Yan Textbook 20211st edition The Editor(s) (if applicable) and The Aut
描述.Integrating concepts from deep learning, machine learning, and artificial neural networks, this highly unique textbook presents content progressively from easy to more complex, orienting its content about knowledge transfer from the viewpoint of machine intelligence. It adopts the methodology from graphical theory, mathematical models, and algorithmic implementation, as well as covers datasets preparation, programming, results analysis and evaluations..Beginning with a grounding about artificial neural networks with neurons and the activation functions, the work then explains the mechanism of deep learning using advanced mathematics. In particular, it emphasizes how to use TensorFlow and the latest MATLAB deep-learning toolboxes for implementing deep learning algorithms..As a prerequisite, readers should have a solid understanding especially of mathematical analysis, linear algebra, numerical analysis, optimizations, differential geometry, manifold, and information theory, as well as basic algebra, functional analysis, and graphical models. This computational knowledge will assist in comprehending the subject matter not only of this text/reference, but also in relevant deep learni
出版日期Textbook 20211st edition
關(guān)鍵詞Deep Learning; Machine Learning; Pattern Analysis; Manifold Learning; Machine Vision; Reinforcement Learn
版次1
doihttps://doi.org/10.1007/978-3-030-61081-4
isbn_softcover978-3-030-61083-8
isbn_ebook978-3-030-61081-4Series ISSN 1868-0941 Series E-ISSN 1868-095X
issn_series 1868-0941
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書(shū)目名稱Computational Methods for Deep Learning影響因子(影響力)




書(shū)目名稱Computational Methods for Deep Learning影響因子(影響力)學(xué)科排名




書(shū)目名稱Computational Methods for Deep Learning網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Computational Methods for Deep Learning網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Computational Methods for Deep Learning被引頻次




書(shū)目名稱Computational Methods for Deep Learning被引頻次學(xué)科排名




書(shū)目名稱Computational Methods for Deep Learning年度引用




書(shū)目名稱Computational Methods for Deep Learning年度引用學(xué)科排名




書(shū)目名稱Computational Methods for Deep Learning讀者反饋




書(shū)目名稱Computational Methods for Deep Learning讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:22:57 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:27:21 | 只看該作者
地板
發(fā)表于 2025-3-22 07:06:18 | 只看該作者
Texts in Computer Sciencehttp://image.papertrans.cn/c/image/232712.jpg
5#
發(fā)表于 2025-3-22 11:55:19 | 只看該作者
6#
發(fā)表于 2025-3-22 16:47:07 | 只看該作者
7#
發(fā)表于 2025-3-22 19:03:20 | 只看該作者
CapsNet and Manifold Learning, a vector to reflect this relationship. Meanwhile, manifold learning, which is emphasized on infinity continuity?and was originated from differential geometry, has been applied to nonlinear dimensionality reduction?in machine learning.
8#
發(fā)表于 2025-3-23 00:29:17 | 只看該作者
9#
發(fā)表于 2025-3-23 03:36:49 | 只看該作者
https://doi.org/10.1007/978-3-031-35323-9re Embedding) is a deep learning framework, which originally was developed at the University of California, Berkeley. Caffe supports visual object detection and classification as well as image segmentation using CNN, R-CNN, LSTM, and fully connected neural networks. Caffe supports GPU-based and CPU-
10#
發(fā)表于 2025-3-23 07:14:32 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 21:46
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
承德县| 渝中区| 印江| 珲春市| 崇文区| 磐安县| 乐昌市| 韩城市| 双江| 元氏县| 光山县| 大邑县| 陇川县| 永宁县| 遂宁市| 玉林市| 万州区| 宁德市| 牡丹江市| 襄垣县| 隆昌县| 桦南县| 马关县| 沾化县| 长岛县| 故城县| 蒲城县| 道真| 通山县| 忻州市| 樟树市| 剑河县| 黄平县| 桑日县| 孟州市| 亚东县| 洛扎县| 盐边县| 鹤山市| 富平县| 连平县|