找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computational Methods and Function Theory; Proceedings of a Con Stephan Ruscheweyh,Edward B. Saff,Richard S. Varga Conference proceedings 1

[復(fù)制鏈接]
樓主: Enkephalin
21#
發(fā)表于 2025-3-25 06:07:43 | 只看該作者
https://doi.org/10.1007/978-3-642-00460-5e evolution of a slightly perturbed flat vortex sheet. We will indicate some open problems of current research and propose a new physically desingularized Vortex sheet equation, which agrees with the finite thickness vortex layer equations in the localized approximation.
22#
發(fā)表于 2025-3-25 10:26:59 | 只看該作者
On the maximal range problem for slit domains,e . Ω. as . We are interested in the explicit characterization of Ω. for some specific domains as well as the corresponding . ε ..(ω), i.e. the ones with .. In this paper we solve completely the maximal range problem for the slit domains . These results yield, for instance, new inequalities relating
23#
發(fā)表于 2025-3-25 12:03:19 | 只看該作者
On bernstein type inequalities and a weighted chebyshev approximation problem on ellipses,ny smaller ellipse with the same foci. For the uniform and a certain weighted uniform norm, and for the case that the two ellipses are not “too close”, we derive sharp estimates of this type and determine the corresponding extremal polynomials. These Bernstein type inequalities are closely connected
24#
發(fā)表于 2025-3-25 18:53:15 | 只看該作者
Conformal mapping and Fourier-Jacobi approximations,, we explain how the corner singularities of the of the derivative of the boundary correspondence function can be represented by Jacobi weight functions, and study the convergence properties of an associated Fourier-Jacobi method for approximating this derivative. The practical significance of this
25#
發(fā)表于 2025-3-25 23:46:04 | 只看該作者
26#
發(fā)表于 2025-3-26 03:41:40 | 只看該作者
27#
發(fā)表于 2025-3-26 07:01:20 | 只看該作者
Open problems and conjectures in complex analysis,
28#
發(fā)表于 2025-3-26 10:46:57 | 只看該作者
Orthogonal polynomials, chain sequences, three-term recurrence relations and continued fractions,
29#
發(fā)表于 2025-3-26 15:02:33 | 只看該作者
30#
發(fā)表于 2025-3-26 19:27:10 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-30 04:00
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
新化县| 承德市| 辉县市| 铁岭市| 麻江县| 唐山市| 宝坻区| 罗平县| 齐齐哈尔市| 阳春市| 昌图县| 新邵县| 游戏| 田东县| 汾西县| 崇州市| 汾阳市| 新干县| 定西市| 吉首市| 绿春县| 西贡区| 成武县| 巴中市| 阿勒泰市| 安阳市| 溆浦县| 彭州市| 越西县| 涪陵区| 钟山县| 云浮市| 柘城县| 拉萨市| 车致| 晋城| 葫芦岛市| 宜城市| 喜德县| 徐闻县| 虞城县|