找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computational Mechanics with Deep Learning; An Introduction Genki Yagawa,Atsuya Oishi Textbook 2023 The Editor(s) (if applicable) and The A

[復(fù)制鏈接]
查看: 40471|回復(fù): 48
樓主
發(fā)表于 2025-3-21 18:53:22 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Computational Mechanics with Deep Learning
副標(biāo)題An Introduction
編輯Genki Yagawa,Atsuya Oishi
視頻videohttp://file.papertrans.cn/233/232678/232678.mp4
概述Focuses on both computational mechanics and deep learning.Written in an easy-to-understand manner with detailed mathematical formulas.Include samples for practice
叢書名稱Lecture Notes on Numerical Methods in Engineering and Sciences
圖書封面Titlebook: Computational Mechanics with Deep Learning; An Introduction Genki Yagawa,Atsuya Oishi Textbook 2023 The Editor(s) (if applicable) and The A
描述.This book is intended for students, engineers, and researchers interested in both computational mechanics and deep learning. It presents the mathematical and computational foundations of Deep Learning with detailed mathematical formulas in an easy-to-understand manner. It also discusses various applications of Deep Learning in Computational Mechanics, with detailed explanations of the Computational Mechanics fundamentals selected there. Sample programs are included for the reader to try out in practice. This book is therefore useful for a wide range of readers interested in computational mechanics and deep learning..
出版日期Textbook 2023
關(guān)鍵詞Computational Mechanics; Deep Learning; Neural Networks; Machine Learning; Finite Element Method
版次1
doihttps://doi.org/10.1007/978-3-031-11847-0
isbn_softcover978-3-031-11849-4
isbn_ebook978-3-031-11847-0Series ISSN 1877-7341 Series E-ISSN 1877-735X
issn_series 1877-7341
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書目名稱Computational Mechanics with Deep Learning影響因子(影響力)




書目名稱Computational Mechanics with Deep Learning影響因子(影響力)學(xué)科排名




書目名稱Computational Mechanics with Deep Learning網(wǎng)絡(luò)公開度




書目名稱Computational Mechanics with Deep Learning網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Computational Mechanics with Deep Learning被引頻次




書目名稱Computational Mechanics with Deep Learning被引頻次學(xué)科排名




書目名稱Computational Mechanics with Deep Learning年度引用




書目名稱Computational Mechanics with Deep Learning年度引用學(xué)科排名




書目名稱Computational Mechanics with Deep Learning讀者反饋




書目名稱Computational Mechanics with Deep Learning讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:14:48 | 只看該作者
Lecture Notes on Numerical Methods in Engineering and Scienceshttp://image.papertrans.cn/c/image/232678.jpg
板凳
發(fā)表于 2025-3-22 02:12:07 | 只看該作者
地板
發(fā)表于 2025-3-22 05:44:34 | 只看該作者
978-3-031-11849-4The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
5#
發(fā)表于 2025-3-22 11:41:12 | 只看該作者
https://doi.org/10.1007/978-1-349-03123-8eural network including the error back propagation algorithm, Sect.?. the convolutional neural networks, which have become the mainstream of deep learning in recent years, and Sect.?. compares various methods for accelerating the training process. Finally, Sect.?. describes regularization methods to
6#
發(fā)表于 2025-3-22 13:41:09 | 只看該作者
7#
發(fā)表于 2025-3-22 20:37:14 | 只看該作者
https://doi.org/10.1007/978-1-349-19936-5llision between objects is one of them. In this chapter, we study an application of deep learning to the contact search process, which is indispensable in contact and collision analysis. In particular, we focus on the contact between two smooth contact surfaces. In Sect.?., the basics of the contact
8#
發(fā)表于 2025-3-23 00:40:36 | 只看該作者
https://doi.org/10.1007/978-1-349-19936-5uss the application of deep learning to fluid dynamics problems. Section?. describes the basic equations of fluid dynamics, Sect.?. the basics of the finite difference method, one of the most popular methods for solving fluid dynamics problems, Sect.?. a practical example of a two-dimensional fluid
9#
發(fā)表于 2025-3-23 02:55:04 | 只看該作者
Organizing and Working in a Study Group,cy of element stiffness matrices (Sect.?.), finite element analysis using convolutional operations (Sect.?.), fluid analysis using variational autoencoders (Sect.?.), a zooming method using feedforward neural networks (Sect.?.), and an application of physics-informed neural networks to solid mechani
10#
發(fā)表于 2025-3-23 07:32:40 | 只看該作者
https://doi.org/10.1007/978-981-16-2305-9mputational Mechanics with Deep Learning” from the perspective of programming. Section . describes some programs in the field of computational mechanics used in the Data Preparation Phase, including three topics discussed in the case study: the element stiffness matrix by using numerical quadrature
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-31 08:41
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
太原市| 松潘县| 紫阳县| 顺平县| 遵化市| 北辰区| 乳山市| 绵竹市| 济南市| 宜城市| 梧州市| 化德县| 从江县| 黑龙江省| 绥芬河市| 车致| 田林县| 密山市| 青海省| 清河县| 霍州市| 六枝特区| 永春县| 榆林市| 沁水县| 罗城| 永城市| 乌鲁木齐县| 三明市| 庆城县| 湖州市| 兴业县| 云浮市| 边坝县| 循化| 陕西省| 安溪县| 白城市| 英吉沙县| 萍乡市| 黔西县|