找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computational Mathematics and Variational Analysis; Nicholas J. Daras,Themistocles M. Rassias Book 2020 Springer Nature Switzerland AG 202

[復(fù)制鏈接]
樓主: FROM
31#
發(fā)表于 2025-3-26 23:43:07 | 只看該作者
32#
發(fā)表于 2025-3-27 04:21:00 | 只看該作者
33#
發(fā)表于 2025-3-27 08:53:32 | 只看該作者
Some New Ostrowski Type Integral Inequalities via General Fractional Integrals,e new estimates with respect to Ostrowski type integral inequalities via general fractional integrals are obtained. It is pointed out that some new special cases can be deduced from main results. Some applications to special means for different real numbers and new error estimates for the midpoint f
34#
發(fā)表于 2025-3-27 13:09:31 | 只看該作者
Some New Integral Inequalities via General Fractional Operators,integral operator via differentiable function. By applying the established identity, the generalized trapezoidal type integral inequalities have been discovered. It is pointed out that the results of this research provide integral inequalities for almost all fractional integrals discovered in recent
35#
發(fā)表于 2025-3-27 15:14:35 | 只看該作者
36#
發(fā)表于 2025-3-27 20:13:57 | 只看該作者
37#
發(fā)表于 2025-3-28 01:10:09 | 只看該作者
38#
發(fā)表于 2025-3-28 05:34:30 | 只看該作者
Additive (,, ,)-Functional Inequalities in Complex Banach Spaces,|..|?>?1, and .where .. and .. are fixed complex numbers with 1?+?|..|?>?|..|?>?1. Using the fixed point method and the direct method, we prove the Hyers–Ulam stability of the additive (.., ..)-functional inequalities (2) and (1) in complex Banach spaces.
39#
發(fā)表于 2025-3-28 09:20:18 | 只看該作者
40#
發(fā)表于 2025-3-28 10:39:32 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 11:58
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
广丰县| 娄底市| 长葛市| 左权县| 西峡县| 嘉义市| 黑河市| 茶陵县| 武穴市| 连云港市| 永修县| 商河县| 绍兴市| 安远县| 霍林郭勒市| 平凉市| 建水县| 文昌市| 印江| 屏南县| 金华市| 普安县| 肥西县| 万山特区| 三台县| 鞍山市| 昭通市| 延寿县| 双桥区| 张家口市| 天门市| 隆子县| 鸡泽县| 霞浦县| 龙口市| 长葛市| 云和县| 清河县| 罗江县| 缙云县| 宁蒗|