找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computational Mathematics and Variational Analysis; Nicholas J. Daras,Themistocles M. Rassias Book 2020 Springer Nature Switzerland AG 202

[復(fù)制鏈接]
樓主: FROM
31#
發(fā)表于 2025-3-26 23:43:07 | 只看該作者
32#
發(fā)表于 2025-3-27 04:21:00 | 只看該作者
33#
發(fā)表于 2025-3-27 08:53:32 | 只看該作者
Some New Ostrowski Type Integral Inequalities via General Fractional Integrals,e new estimates with respect to Ostrowski type integral inequalities via general fractional integrals are obtained. It is pointed out that some new special cases can be deduced from main results. Some applications to special means for different real numbers and new error estimates for the midpoint f
34#
發(fā)表于 2025-3-27 13:09:31 | 只看該作者
Some New Integral Inequalities via General Fractional Operators,integral operator via differentiable function. By applying the established identity, the generalized trapezoidal type integral inequalities have been discovered. It is pointed out that the results of this research provide integral inequalities for almost all fractional integrals discovered in recent
35#
發(fā)表于 2025-3-27 15:14:35 | 只看該作者
36#
發(fā)表于 2025-3-27 20:13:57 | 只看該作者
37#
發(fā)表于 2025-3-28 01:10:09 | 只看該作者
38#
發(fā)表于 2025-3-28 05:34:30 | 只看該作者
Additive (,, ,)-Functional Inequalities in Complex Banach Spaces,|..|?>?1, and .where .. and .. are fixed complex numbers with 1?+?|..|?>?|..|?>?1. Using the fixed point method and the direct method, we prove the Hyers–Ulam stability of the additive (.., ..)-functional inequalities (2) and (1) in complex Banach spaces.
39#
發(fā)表于 2025-3-28 09:20:18 | 只看該作者
40#
發(fā)表于 2025-3-28 10:39:32 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 16:45
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
高台县| 襄垣县| 普定县| 晋城| 海原县| 湖州市| 资阳市| 义马市| 盘山县| 和林格尔县| 兰州市| 芷江| 福建省| 信宜市| 汉中市| 洞头县| 贡觉县| 铁岭市| 永清县| 井陉县| 潞城市| 正蓝旗| 永州市| 石阡县| 黄骅市| 德惠市| 遂溪县| 常宁市| 罗甸县| 陆良县| 拉孜县| 蒲城县| 象州县| 平和县| 英吉沙县| 陕西省| 神农架林区| 无极县| 库车县| 毕节市| 海林市|