找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Computational Mathematics Modeling in Cancer Analysis; Second International Wenjian Qin,Nazar Zaki,Chao Li Conference proceedings 2023 The

[復(fù)制鏈接]
樓主: Maculate
21#
發(fā)表于 2025-3-25 04:04:09 | 只看該作者
https://doi.org/10.1007/978-3-031-45087-7Computer Science; Cancer imaging analysis; Computer-aided tumor detection; Multi-modality; Mathematics m
22#
發(fā)表于 2025-3-25 09:47:24 | 只看該作者
978-3-031-45086-0The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
23#
發(fā)表于 2025-3-25 13:39:53 | 只看該作者
Virtual Contrast-Enhanced MRI Synthesis with High Model Generalizability Using Trusted Federated Leevention was visually assessed by reviewing the excluded images after training. Three single institutional models (separately trained with single institutional data), a joint model (jointly trained using multi-institutional data), and two popular federated learning frameworks (FedAvg and FedProx) we
24#
發(fā)表于 2025-3-25 17:39:43 | 只看該作者
25#
發(fā)表于 2025-3-25 23:01:11 | 只看該作者
The Value of Ensemble Learning Model Based on Conventional Non-Contrast MRI in the Pathological Graaverage AUC was 0.74(0.69,0.76) and the accuracy was 0.73. It was followed by SVM, LR and KNN models, and the average AUC were 0.73(0.66,0.80), 0.71(0.62,0.78) and 0.66(0.61,0.72), respectively. The performance of stacking ensemble model showed effective improvement, with an average AUC of 0.77(0.67
26#
發(fā)表于 2025-3-26 03:32:48 | 只看該作者
,Federated Multi-organ Dynamic Attention Segmentation Network with?Small CT Dataset, clients and the unseen external testing dataset from the center server. The experimental results show that the proposed federated aggregation scheme improves the generalization ability of the model in a smaller training dataset and partially alleviates the problem of class imbalance.
27#
發(fā)表于 2025-3-26 04:35:48 | 只看該作者
28#
發(fā)表于 2025-3-26 08:47:09 | 只看該作者
,Advancing Delineation of?Gross Tumor Volume Based on?Magnetic Resonance Imaging by?Performing Sourcansfers knowledge of tumor segmentation learned in the source domain to the unlabeled target dataset without the access to the source dataset and annotate the target domain, for the NPC. Specifically, We enhances model performance by jointly optimizing entropy minimization and pseudo-labeling based
29#
發(fā)表于 2025-3-26 16:26:55 | 只看該作者
30#
發(fā)表于 2025-3-26 19:36:21 | 只看該作者
Fully Convolutional Transformer-Based GAN for Cross-Modality CT to PET Image Synthesis,lled C2P-GAN for cross-modality synthesis of PET images from CT images. It composed of a generator and a discriminator that compete with each other, as well as a registration network that can eliminate noise interference. The generator integrates convolutional networks that excel in capturing local
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-17 11:00
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
章丘市| 防城港市| 苏尼特左旗| 卢龙县| 宣武区| 莱阳市| 集贤县| 景泰县| 孟州市| 柏乡县| 尖扎县| 潢川县| 鄂托克旗| 越西县| 孙吴县| 日土县| 余江县| 皋兰县| 香格里拉县| 增城市| 鲜城| 永州市| 铁力市| 江川县| 吉水县| 红原县| 龙江县| 富裕县| 加查县| 鄂托克前旗| 西畴县| 西乌珠穆沁旗| 宜都市| 延川县| 黄陵县| 定日县| 通江县| 阿图什市| 绩溪县| 永平县| 惠来县|