找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computational Linguistics; 15th International C K?iti Hasida,Win Pa Pa Conference proceedings 2018 Springer Nature Singapore Pte Ltd. 2018

[復(fù)制鏈接]
樓主: 聯(lián)系
31#
發(fā)表于 2025-3-26 23:24:40 | 只看該作者
Semantic Refinement GRU-Based Neural Language Generation for Spoken Dialogue Systemsl networks (RNN), in which a gating mechanism is applied before RNN computation. This allows the proposed model to generate appropriate sentences. The RNN-based generator can be learned from unaligned data by jointly training sentence planning and surface realization to produce natural language resp
32#
發(fā)表于 2025-3-27 01:58:00 | 只看該作者
Discovering Representative Space for Relational Similarity Measurementional similarity is important for various natural language processing tasks such as, relational search, noun-modifier classification, and analogy detection. Despite this need, the features that accurately express the relational similarity between two word pairs remain largely unknown. So far, method
33#
發(fā)表于 2025-3-27 08:43:56 | 只看該作者
34#
發(fā)表于 2025-3-27 13:20:35 | 只看該作者
Integrating Specialized Bilingual Lexicons of Multiword Expressions for Domain Adaptation in Statistaracterize specific-domains vocabularies. Translating multiword expressions is a challenge for current Statistical Machine Translation (SMT) systems because corpus-based approaches are effective only when large amounts of parallel corpora are available. However, parallel corpora are only available f
35#
發(fā)表于 2025-3-27 14:55:33 | 只看該作者
Logical Parsing from Natural Language Based on a Neural Translation Modelemantic parser rely on high-quality lexicons, hand-crafted grammars and linguistic features which are limited by applied domain or representation. In this paper, we propose an approach to learn from denotations based on the Seq2Seq model augmented with attention mechanism. We encode input sequence i
36#
發(fā)表于 2025-3-27 17:47:38 | 只看該作者
37#
發(fā)表于 2025-3-27 22:10:51 | 只看該作者
38#
發(fā)表于 2025-3-28 04:15:40 | 只看該作者
Khmer POS Tagging Using Conditional Random Fieldsstudy, in order to further explore this topic, we present an alternative approach to Khmer POS tagging using Conditional Random Fields (CRFs). Since the features greatly affect the tagging accuracy, we investigate five groups of features and use them with the CRF model. First, we study different con
39#
發(fā)表于 2025-3-28 07:14:13 | 只看該作者
Statistical Khmer Name Romanizationethods are applied prevalently in practice. These are inconsistent and complicated in some cases, due to unstable phonemic, orthographic, and etymological principles. Consequently, statistical approaches are required for the task. We collect and manually align 7,?658 Khmer name Romanization instance
40#
發(fā)表于 2025-3-28 13:34:12 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 11:19
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
丹棱县| 寻乌县| 弥渡县| 日照市| 孝感市| 许昌市| 吉木乃县| 资兴市| 乌恰县| 鄱阳县| 凤山县| 甘谷县| 阿鲁科尔沁旗| 汽车| 句容市| 凤翔县| 五家渠市| 买车| 屏山县| 濮阳市| 余姚市| 建湖县| 富裕县| 定襄县| 巴马| 青阳县| 宁蒗| 广州市| 安福县| 海淀区| 丹巴县| 瑞安市| 达州市| 静乐县| 元氏县| 新沂市| 昌宁县| 辽源市| 信宜市| 吐鲁番市| 平乡县|