找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computational Linguistics; 15th International C K?iti Hasida,Win Pa Pa Conference proceedings 2018 Springer Nature Singapore Pte Ltd. 2018

[復(fù)制鏈接]
樓主: 聯(lián)系
31#
發(fā)表于 2025-3-26 23:24:40 | 只看該作者
Semantic Refinement GRU-Based Neural Language Generation for Spoken Dialogue Systemsl networks (RNN), in which a gating mechanism is applied before RNN computation. This allows the proposed model to generate appropriate sentences. The RNN-based generator can be learned from unaligned data by jointly training sentence planning and surface realization to produce natural language resp
32#
發(fā)表于 2025-3-27 01:58:00 | 只看該作者
Discovering Representative Space for Relational Similarity Measurementional similarity is important for various natural language processing tasks such as, relational search, noun-modifier classification, and analogy detection. Despite this need, the features that accurately express the relational similarity between two word pairs remain largely unknown. So far, method
33#
發(fā)表于 2025-3-27 08:43:56 | 只看該作者
34#
發(fā)表于 2025-3-27 13:20:35 | 只看該作者
Integrating Specialized Bilingual Lexicons of Multiword Expressions for Domain Adaptation in Statistaracterize specific-domains vocabularies. Translating multiword expressions is a challenge for current Statistical Machine Translation (SMT) systems because corpus-based approaches are effective only when large amounts of parallel corpora are available. However, parallel corpora are only available f
35#
發(fā)表于 2025-3-27 14:55:33 | 只看該作者
Logical Parsing from Natural Language Based on a Neural Translation Modelemantic parser rely on high-quality lexicons, hand-crafted grammars and linguistic features which are limited by applied domain or representation. In this paper, we propose an approach to learn from denotations based on the Seq2Seq model augmented with attention mechanism. We encode input sequence i
36#
發(fā)表于 2025-3-27 17:47:38 | 只看該作者
37#
發(fā)表于 2025-3-27 22:10:51 | 只看該作者
38#
發(fā)表于 2025-3-28 04:15:40 | 只看該作者
Khmer POS Tagging Using Conditional Random Fieldsstudy, in order to further explore this topic, we present an alternative approach to Khmer POS tagging using Conditional Random Fields (CRFs). Since the features greatly affect the tagging accuracy, we investigate five groups of features and use them with the CRF model. First, we study different con
39#
發(fā)表于 2025-3-28 07:14:13 | 只看該作者
Statistical Khmer Name Romanizationethods are applied prevalently in practice. These are inconsistent and complicated in some cases, due to unstable phonemic, orthographic, and etymological principles. Consequently, statistical approaches are required for the task. We collect and manually align 7,?658 Khmer name Romanization instance
40#
發(fā)表于 2025-3-28 13:34:12 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 06:54
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
疏勒县| 布尔津县| 浦县| 类乌齐县| 疏附县| 汨罗市| 阳原县| 沙坪坝区| 洞头县| 融水| 敦化市| 吴堡县| 香港 | 洞口县| 股票| 金平| 宜良县| 永川市| 柞水县| 什邡市| 滨海县| 朝阳县| 囊谦县| 隆昌县| 平阳县| 江安县| 航空| 神农架林区| 博兴县| 武清区| 东莞市| 安新县| 上饶市| 普安县| 阳原县| 通州区| 娄烦县| 吕梁市| 沈阳市| 乾安县| 淮北市|