找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computational Learning Theory; 15th Annual Conferen Jyrki Kivinen,Robert H. Sloan Conference proceedings 2002 Springer-Verlag Berlin Heidel

[復(fù)制鏈接]
樓主: 審美家
31#
發(fā)表于 2025-3-26 23:46:52 | 只看該作者
https://doi.org/10.1007/978-3-531-91030-7als)..We then apply the above and some other results from the literature to Agnostic learning and give negative and positive results for Agnostic learning and PAC learning with malicious errors of the above classes.
32#
發(fā)表于 2025-3-27 03:23:22 | 只看該作者
Path Kernels and Multiplicative Updateseach node is one again. Finally we discuss the use of regular expressions for speeding up the kernel and re-normalization computation. In particular we rewrite the multiplicative algorithms that predict as well as the best pruning of a series parallel graph in terms of efficient kernel computations.
33#
發(fā)表于 2025-3-27 06:52:43 | 只看該作者
Predictive Complexity and Informationve complexity into sequences of essentially bigger predictive complexity. A concept of amount of predictive information .(.: .) is studied. We show that this information is non-commutative in a very strong sense and present asymptotic relations between values .(.: .), .(.: .), .(.) and .(.).
34#
發(fā)表于 2025-3-27 09:30:58 | 只看該作者
A Second-Order Perceptron Algorithmms, we also design a refined version of the second-order Perceptron algorithm which adaptively sets the value of this parameter. For this second algorithm we are able to prove mistake bounds corresponding to a nearly optimal constant setting of the parameter.
35#
發(fā)表于 2025-3-27 16:01:55 | 只看該作者
36#
發(fā)表于 2025-3-27 17:51:40 | 只看該作者
Merging Uniform Inductive Learnersriteria in the uniform model are considered. The main result is that for any pair (., .) of different inference criteria considered here there exists a fixed set of descriptions of learning problems from ., such that its union with any uniformly .-learnable collection is uniformly .-learnable, but no longer uniformly .-learnable.
37#
發(fā)表于 2025-3-28 01:22:22 | 只看該作者
38#
發(fā)表于 2025-3-28 02:51:54 | 只看該作者
PAC Bounds for Multi-armed Bandit and Markov Decision ProcessesProcesses. This is done essentially by simulating Value Iteration, and in each iteration invoking the multi-armed bandit algorithm. Using our PAC algorithm for the multi-armed bandit problem we improve the dependence on the number of actions.
39#
發(fā)表于 2025-3-28 09:12:32 | 只看該作者
Bounds for the Minimum Disagreement Problem with Applications to Learning Theoryals)..We then apply the above and some other results from the literature to Agnostic learning and give negative and positive results for Agnostic learning and PAC learning with malicious errors of the above classes.
40#
發(fā)表于 2025-3-28 11:41:10 | 只看該作者
Erkenntnisbeitrag der Untersuchung,bounds on generalization error in terms of localized Rademacher complexities. This allows us to prove new results about generalization performance for convex hulls in terms of characteristics of the base class. As a byproduct, we obtain a simple proof of some of the known bounds on the entropy of convex hulls.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-22 01:31
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
乌什县| 城市| 张家港市| 博客| 巴彦县| 镇原县| 沙湾县| 宝兴县| 恭城| 山丹县| 九龙城区| 武安市| 翼城县| 通州区| 抚宁县| 成武县| 庆安县| 仁怀市| 丰城市| 广南县| 沂南县| 和静县| 东阳市| 中山市| 中阳县| 太仓市| 壤塘县| 耿马| 栾城县| 尚志市| 金门县| 沙坪坝区| 全椒县| 格尔木市| 道孚县| 旺苍县| 桓仁| 保康县| 右玉县| 明水县| 汕尾市|