找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computational Learning Theory; 14th Annual Conferen David Helmbold,Bob Williamson Conference proceedings 2001 Springer-Verlag Berlin Heidel

[復(fù)制鏈接]
查看: 22583|回復(fù): 62
樓主
發(fā)表于 2025-3-21 19:24:02 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Computational Learning Theory
副標(biāo)題14th Annual Conferen
編輯David Helmbold,Bob Williamson
視頻videohttp://file.papertrans.cn/233/232575/232575.mp4
概述Includes supplementary material:
叢書名稱Lecture Notes in Computer Science
圖書封面Titlebook: Computational Learning Theory; 14th Annual Conferen David Helmbold,Bob Williamson Conference proceedings 2001 Springer-Verlag Berlin Heidel
出版日期Conference proceedings 2001
關(guān)鍵詞Algorithmic Learning; Boosting; Classification; Computational Learning; Computational Learning Theory; Da
版次1
doihttps://doi.org/10.1007/3-540-44581-1
isbn_softcover978-3-540-42343-0
isbn_ebook978-3-540-44581-4Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer-Verlag Berlin Heidelberg 2001
The information of publication is updating

書目名稱Computational Learning Theory影響因子(影響力)




書目名稱Computational Learning Theory影響因子(影響力)學(xué)科排名




書目名稱Computational Learning Theory網(wǎng)絡(luò)公開度




書目名稱Computational Learning Theory網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Computational Learning Theory被引頻次




書目名稱Computational Learning Theory被引頻次學(xué)科排名




書目名稱Computational Learning Theory年度引用




書目名稱Computational Learning Theory年度引用學(xué)科排名




書目名稱Computational Learning Theory讀者反饋




書目名稱Computational Learning Theory讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:22:20 | 只看該作者
Radial Basis Function Neural Networks Have Superlinear VC Dimension,rons. As the main result we show that every reasonably sized standard network of radial basis function (RBF) neurons has VC dimension Ω([itW ] log .), where . is the number of parameters and . the number of nodes. This significantly improves the previously known linear bound. We also derive superlin
板凳
發(fā)表于 2025-3-22 01:04:14 | 只看該作者
Tracking a Small Set of Experts by Mixing Past Posteriors,ves predictions from a large set of . experts. Its goal is to predict almost as well as the best sequence of such experts chosen off-line by partitioning the training sequence into .+1 sections and then choosing the best expert for each section. We build on methods developed by Herbster and Warmuth
地板
發(fā)表于 2025-3-22 05:44:45 | 只看該作者
Potential-Based Algorithms in Online Prediction and Game Theory,e and Warmuth’s Weighted Majority), for playing iterated games (including Freund and Schapire’s Hedge and MW, as well as the Λ-strategies of Hart and Mas-Colell), and for boosting (including AdaBoost) are special cases of a general decision strategy based on the notion of potential. By analyzing thi
5#
發(fā)表于 2025-3-22 11:45:29 | 只看該作者
A Sequential Approximation Bound for Some Sample-Dependent Convex Optimization Problems with Applicons. This analysis is closely related to the regret bound framework in online learning. However we apply it to batch learning algorithms instead of online stochastic gradient decent methods. Applications of this analysis in some classification and regression problems will be illustrated.
6#
發(fā)表于 2025-3-22 16:11:13 | 只看該作者
7#
發(fā)表于 2025-3-22 19:14:55 | 只看該作者
Ultraconservative Online Algorithms for Multiclass Problems,pe vector per class. Given an input instance, a multiclass hypothesis computes a similarity-score between each prototype and the input instance and then sets the predicted label to be the index of the prototype achieving the highest similarity. To design and analyze the learning algorithms in this p
8#
發(fā)表于 2025-3-22 21:23:31 | 只看該作者
9#
發(fā)表于 2025-3-23 03:05:27 | 只看該作者
Adaptive Strategies and Regret Minimization in Arbitrarily Varying Markov Environments,is problem is captured by a two-person stochastic game model involving the reward maximizing agent and a second player, which is free to use an arbitrary (non-stationary and unpredictable) control strategy. While the minimax value of the associated zero-sum game provides a guaranteed performance lev
10#
發(fā)表于 2025-3-23 08:53:17 | 只看該作者
,Robust Learning — Rich and Poor,d classes T(.) where T is any general recursive operator, are learnable in the sense .. It was already shown before, see [14,19], that for . (learning in the limit) robust learning is rich in that there are classes being both not contained in any recursively enumerable class of recursive functions a
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 22:11
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
盈江县| 金川县| 精河县| 木兰县| 岗巴县| 翁牛特旗| 庆城县| 绥化市| 广汉市| 金阳县| 乃东县| 理塘县| 莒南县| 本溪市| 黔西| 丹巴县| 孟州市| 枣强县| 玛多县| 汕头市| 深州市| 桃园市| 漯河市| 和林格尔县| 长海县| 始兴县| 淳化县| 铜陵市| 抚州市| 石泉县| 包头市| 玉山县| 陆丰市| 沁水县| 苍溪县| 毕节市| 合川市| 巧家县| 阿坝| 女性| 辽宁省|