找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computational Intelligence: Theories, Applications and Future Directions - Volume I; ICCI-2017 Nishchal K. Verma,A. K. Ghosh Conference pro

[復(fù)制鏈接]
查看: 27248|回復(fù): 55
樓主
發(fā)表于 2025-3-21 19:59:51 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Computational Intelligence: Theories, Applications and Future Directions - Volume I
副標(biāo)題ICCI-2017
編輯Nishchal K. Verma,A. K. Ghosh
視頻videohttp://file.papertrans.cn/233/232563/232563.mp4
概述Presents the latest work in the area of computational intelligence.Addresses challenges and directions for the future.Includes contributions from international researchers
叢書名稱Advances in Intelligent Systems and Computing
圖書封面Titlebook: Computational Intelligence: Theories, Applications and Future Directions - Volume I; ICCI-2017 Nishchal K. Verma,A. K. Ghosh Conference pro
描述.This book presents selected proceedings of ICCI-2017, discussing theories, applications and future directions in the field of computational intelligence (CI). ICCI-2017 brought together international researchers presenting innovative work on self-adaptive systems and methods. This volume covers the current state of the field and explores new, open research directions. The book serves as a guide for readers working to develop and validate real-time problems and related applications using computational intelligence. It focuses on systems that deal with raw data intelligently, generate qualitative information that improves decision-making, and behave as smart systems, making it a valuable resource for researchers and professionals alike..?.
出版日期Conference proceedings 2019
關(guān)鍵詞Big Data and Knowledge Discovery; Data Mining and Visualization; Computer Vision; Image Processing and
版次1
doihttps://doi.org/10.1007/978-981-13-1132-1
isbn_softcover978-981-13-1131-4
isbn_ebook978-981-13-1132-1Series ISSN 2194-5357 Series E-ISSN 2194-5365
issn_series 2194-5357
copyrightSpringer Nature Singapore Pte Ltd. 2019
The information of publication is updating

書目名稱Computational Intelligence: Theories, Applications and Future Directions - Volume I影響因子(影響力)




書目名稱Computational Intelligence: Theories, Applications and Future Directions - Volume I影響因子(影響力)學(xué)科排名




書目名稱Computational Intelligence: Theories, Applications and Future Directions - Volume I網(wǎng)絡(luò)公開度




書目名稱Computational Intelligence: Theories, Applications and Future Directions - Volume I網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Computational Intelligence: Theories, Applications and Future Directions - Volume I被引頻次




書目名稱Computational Intelligence: Theories, Applications and Future Directions - Volume I被引頻次學(xué)科排名




書目名稱Computational Intelligence: Theories, Applications and Future Directions - Volume I年度引用




書目名稱Computational Intelligence: Theories, Applications and Future Directions - Volume I年度引用學(xué)科排名




書目名稱Computational Intelligence: Theories, Applications and Future Directions - Volume I讀者反饋




書目名稱Computational Intelligence: Theories, Applications and Future Directions - Volume I讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:04:05 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:14:01 | 只看該作者
地板
發(fā)表于 2025-3-22 05:55:56 | 只看該作者
High-Dimensional Data Classification Using PSO and Bat Algorithmf time. However, features minimization is a difficult and challenging task due to large search space. Generally, a 100 features datasets have over . features. Therefore, a search algorithm which converges at global optima in less amount of time is needed to tackle this problem. Hence, a modified bin
5#
發(fā)表于 2025-3-22 08:56:42 | 只看該作者
Feature Learning Using Stacked Autoencoder for Shared and Multimodal Fusion of Medical Imagestract features from large training data. The current methods used for multiple modalities are mostly conventional machine learning, in which people use the handcrafted feature, which is very difficult to construct for large training sizes. Deep learning which is an advancement in the machine learnin
6#
發(fā)表于 2025-3-22 14:39:32 | 只看該作者
7#
發(fā)表于 2025-3-22 19:08:12 | 只看該作者
Automatic ECG Signals Recognition Based on Time Domain Features Extraction Using Fiducial Mean Squarffering from heart attacks. There are various pattern recognition for the automatic diagnostics of ECG beat abnormalities. The ECG signals are used to recognize heart-related diseases. The proposed method defines the time domain feature extraction using fiducial mean square algorithm. The Butterwort
8#
發(fā)表于 2025-3-23 00:49:20 | 只看該作者
9#
發(fā)表于 2025-3-23 02:11:46 | 只看該作者
Image Processing Methods for Automated Assessment of Sperm DNA Integritynsible for infertility, male infertility constitutes 50% of the cases. Male fertility is largely dependent on sperm quality. Sperm is a specialized cell and the fertilization potential of a sperm cell relies on the integrity of sperm DNA, apart from other factors. A set of seminal analyzes is done i
10#
發(fā)表于 2025-3-23 09:05:56 | 只看該作者
Smartphone-Based Ubiquitous Data Sensing and Analysis for Personalized Preventive Care: A Conceptualpreventive care is inevitable. The concept of eHealth is buzzing around for a considerable time but it is not utilized in preventive care. It inspires us to do a literature survey of some of the recent seminal research papers on ubiquitous data sensing and behavioral interventions to promote persona
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 07:28
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
曲阜市| 响水县| 高台县| 深泽县| 鄂伦春自治旗| 兴和县| 剑川县| 侯马市| 昔阳县| 玉田县| 博客| 吉木乃县| 宁夏| 阿巴嘎旗| 东安县| 新野县| 沛县| 普安县| 牡丹江市| 黄大仙区| 广饶县| 岑巩县| 太原市| 钟山县| 广平县| 宝丰县| 石屏县| 唐山市| 梨树县| 昭平县| 龙川县| 米林县| 大新县| 长沙市| 老河口市| 长泰县| 新绛县| 临夏市| 道孚县| 赤壁市| 龙泉市|