找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computational Intelligence in Data Mining; Proceedings of the I Himansu Sekhar Behera,Janmenjoy Nayak,Danilo Pelus Conference proceedings 2

[復(fù)制鏈接]
查看: 33594|回復(fù): 63
樓主
發(fā)表于 2025-3-21 19:13:10 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Computational Intelligence in Data Mining
副標(biāo)題Proceedings of the I
編輯Himansu Sekhar Behera,Janmenjoy Nayak,Danilo Pelus
視頻videohttp://file.papertrans.cn/233/232478/232478.mp4
概述Contains current research issues of developments of soft computing, data mining and computational intelligence.Presents applications of current issues of research in green computing, big data analysis
叢書名稱Advances in Intelligent Systems and Computing
圖書封面Titlebook: Computational Intelligence in Data Mining; Proceedings of the I Himansu Sekhar Behera,Janmenjoy Nayak,Danilo Pelus Conference proceedings 2
描述.This proceeding discuss the latest solutions, scientific findings and methods for solving intriguing problems in the fields of data mining, computational intelligence, big data analytics, and soft computing. This gathers outstanding papers from the fifth International Conference on “Computational Intelligence in Data Mining” (ICCIDM), and offer a “sneak preview” of the strengths and weaknesses of trending applications, together with exciting advances in computational intelligence, data mining, and related fields..
出版日期Conference proceedings 2020
關(guān)鍵詞Computational Intelligence; ICCIDM; Conference Proceedings; Data Mining; Fuzzy Logic; Machine Learning; Ad
版次1
doihttps://doi.org/10.1007/978-981-13-8676-3
isbn_softcover978-981-13-8675-6
isbn_ebook978-981-13-8676-3Series ISSN 2194-5357 Series E-ISSN 2194-5365
issn_series 2194-5357
copyrightSpringer Nature Singapore Pte Ltd. 2020
The information of publication is updating

書目名稱Computational Intelligence in Data Mining影響因子(影響力)




書目名稱Computational Intelligence in Data Mining影響因子(影響力)學(xué)科排名




書目名稱Computational Intelligence in Data Mining網(wǎng)絡(luò)公開度




書目名稱Computational Intelligence in Data Mining網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Computational Intelligence in Data Mining被引頻次




書目名稱Computational Intelligence in Data Mining被引頻次學(xué)科排名




書目名稱Computational Intelligence in Data Mining年度引用




書目名稱Computational Intelligence in Data Mining年度引用學(xué)科排名




書目名稱Computational Intelligence in Data Mining讀者反饋




書目名稱Computational Intelligence in Data Mining讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-22 00:12:01 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:44:35 | 只看該作者
地板
發(fā)表于 2025-3-22 08:35:09 | 只看該作者
5#
發(fā)表于 2025-3-22 10:13:50 | 只看該作者
Finding Correlation Between Twitter Influence Metrics and Centrality Measures for Detection of Inflcing many aspects of our lives such as product recommendations, movie reviews, political?campaigns, game predictions, and so on. It can be found that often few individuals tend to be influential enough to drive a whole group or network towards a particular thought. Network Centrality is one of the m
6#
發(fā)表于 2025-3-22 14:16:14 | 只看該作者
QMAA: QoS and Mobility Aware ACO Based Opportunistic Routing Protocol for MANET,e network area. The frequent changes in network topology may suffer from the frequent task of link breaks and links building to transfer data from the source node destination node. The quality of service (QoS) performance of such networks mainly depends on how well the routes are stables and efficie
7#
發(fā)表于 2025-3-22 20:07:26 | 只看該作者
8#
發(fā)表于 2025-3-23 00:31:02 | 只看該作者
An Approach to Compress English Posts from Social Media Texts, formally defined?as transformation of sentence into precise form by preserving?the original meaning of the sentence. In this paper, we propose an approach for compressing sentences from Facebook English posts by?dropping those words who contribute very less importance to the overall meaning of sent
9#
發(fā)表于 2025-3-23 02:57:58 | 只看該作者
A Deep Learning Approach to Predict Football Match Result,in last two decades and provided the probabilities of outcomes of a scheduled match. In this paper we proposed a deep neural network based model to automatically predict result of a football match. The model is trained on selective features and evaluated?through experiment results. We compared our p
10#
發(fā)表于 2025-3-23 08:06:20 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-30 23:24
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
仁布县| 垦利县| 武汉市| 藁城市| 海宁市| 临颍县| 神池县| 贞丰县| 秭归县| 墨脱县| 迁安市| 洞口县| 长治市| 满洲里市| 葫芦岛市| 肃南| 卢氏县| 江口县| 万载县| 陈巴尔虎旗| 白水县| 磐石市| 来安县| 永平县| 中阳县| 延川县| 叶城县| 顺昌县| 周至县| 天台县| 韩城市| 甘洛县| 桑日县| 清河县| 昌图县| 无为县| 峨边| 保定市| 府谷县| 谢通门县| 莎车县|