找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computational Intelligence for COVID-19 and Future Pandemics; Emerging Application Utku Kose,Junzo Watada,Jose Antonio Marmolejo Sauc Book

[復(fù)制鏈接]
查看: 52181|回復(fù): 67
樓主
發(fā)表于 2025-3-21 18:40:12 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Computational Intelligence for COVID-19 and Future Pandemics
副標(biāo)題Emerging Application
編輯Utku Kose,Junzo Watada,Jose Antonio Marmolejo Sauc
視頻videohttp://file.papertrans.cn/233/232447/232447.mp4
概述Includes research works to fight against COVID-19.Comprises of innovative data-oriented and problem-learning models to predict COVID-19-related issues.Focuses on success stories and details for elimin
叢書名稱Disruptive Technologies and Digital Transformations for Society 5.0
圖書封面Titlebook: Computational Intelligence for COVID-19 and Future Pandemics; Emerging Application Utku Kose,Junzo Watada,Jose Antonio Marmolejo Sauc Book
描述.The book covers a wide topic collection starting from essentials of Computational Intelligence to advance, and possible application types against COVID-19 as well as its effects on the field of medical, social, and different data-oriented research scopes. Among these topics, the book also covers very recently, vital topics in terms of fighting against COVID-19 and solutions for future pandemics. The book includes the use of computational intelligence for especially medical diagnosis and treatment, and also data-oriented tracking-predictive solutions, which are key components currently for fighting against COVID-19. In this way, the book will be a key reference work for understanding how computational intelligence and the most recent technologies (i.e. Internet of Healthcare Thing, big data, and data science techniques) can be employed in solution phases and how they change the way of future solutions...The book also covers research works with negative results so that possibledisadvantages of using computational intelligence solutions and/or experienced side-effects can be known widely for better future of medical solutions and use of intelligent systems against COVID-19 and pandem
出版日期Book 2022
關(guān)鍵詞COVID-19; Computational Intelligence; Pandemic; Machine Learning; Medical Diagnosis; Intelligent Systems
版次1
doihttps://doi.org/10.1007/978-981-16-3783-4
isbn_softcover978-981-16-3785-8
isbn_ebook978-981-16-3783-4Series ISSN 2730-9061 Series E-ISSN 2730-907X
issn_series 2730-9061
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapor
The information of publication is updating

書目名稱Computational Intelligence for COVID-19 and Future Pandemics影響因子(影響力)




書目名稱Computational Intelligence for COVID-19 and Future Pandemics影響因子(影響力)學(xué)科排名




書目名稱Computational Intelligence for COVID-19 and Future Pandemics網(wǎng)絡(luò)公開度




書目名稱Computational Intelligence for COVID-19 and Future Pandemics網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Computational Intelligence for COVID-19 and Future Pandemics被引頻次




書目名稱Computational Intelligence for COVID-19 and Future Pandemics被引頻次學(xué)科排名




書目名稱Computational Intelligence for COVID-19 and Future Pandemics年度引用




書目名稱Computational Intelligence for COVID-19 and Future Pandemics年度引用學(xué)科排名




書目名稱Computational Intelligence for COVID-19 and Future Pandemics讀者反饋




書目名稱Computational Intelligence for COVID-19 and Future Pandemics讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:16:03 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:08:59 | 只看該作者
R. Engenhart-Cabillic,M. Wannenmacher public and health care professionals due to its rapid spread around the world. Health care professionals and researchers at present days are targeting various approaches for the detection and prevention of viral growth. One of the best approaches to tackle this pandemic is the implementation of the
地板
發(fā)表于 2025-3-22 07:48:45 | 只看該作者
5#
發(fā)表于 2025-3-22 11:31:24 | 只看該作者
6#
發(fā)表于 2025-3-22 13:55:09 | 只看該作者
G. Gademann,G. Kraft,M. Wannenmachern detail both the traditional methods for pandemics forecasting, namely, the SIR, SEIR, SEIRS, SIRD, and ARIMA and novel data-driven approaches that presented promising results, the LSTM, AE, MAE, CNN, and Random Forest. The article aims to give a comprehensive understanding of the main advantages a
7#
發(fā)表于 2025-3-22 20:09:19 | 只看該作者
Nasenh?hle und Nasennebenh?hlenth the count rising to 6,48,315 (confirmed cases) as of July 4, 2020. The study aims to find the spatial relationship between the confirmed cases of the different months and to classify it into three sets. The findings show that the Monte-Carlo simulations that generated probability distribution map
8#
發(fā)表于 2025-3-23 01:15:16 | 只看該作者
9#
發(fā)表于 2025-3-23 03:23:07 | 只看該作者
10#
發(fā)表于 2025-3-23 07:30:11 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 09:34
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
龙岩市| 浏阳市| 伊金霍洛旗| 德钦县| 且末县| 安吉县| 湖南省| 大田县| 宁武县| 沭阳县| 彰化市| 新泰市| 大同县| 集贤县| 蓬溪县| 军事| 若尔盖县| 炉霍县| 临漳县| 丹巴县| 石泉县| 诸暨市| 张掖市| 本溪| 南部县| 松江区| 昌宁县| 湟源县| 花垣县| 巨鹿县| 望城县| 游戏| 德令哈市| 舒兰市| 黄冈市| 云南省| 兴安盟| 自治县| 即墨市| 乌恰县| 汉阴县|