找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computational Intelligence and Intelligent Systems; 6th International Sy Zhenhua Li,Xiang Li,Zhihua Cai Conference proceedings 2012 Springe

[復(fù)制鏈接]
樓主: 重要
21#
發(fā)表于 2025-3-25 06:28:16 | 只看該作者
22#
發(fā)表于 2025-3-25 11:03:17 | 只看該作者
https://doi.org/10.1007/978-3-658-11012-3solution. So we present an unsupervised clustering algorithm which combing with genetic algorithm and k-medoids clustering algorithm. All of these methods are efficiently to solve the defects of traditional k-medoids algorithm. And the algorithm can distinguish new attack from already existed attack
23#
發(fā)表于 2025-3-25 12:40:30 | 只看該作者
24#
發(fā)表于 2025-3-25 18:38:03 | 只看該作者
Roberta Pearson,Anthony N. Smithuperior in the condition of time restraint comparing with the Genetic Algorithm, and validate the effectiveness of employing the Artificial Fish Swarm Algorithm in resolving dynamic weapon target assignment problem.
25#
發(fā)表于 2025-3-25 23:41:01 | 只看該作者
26#
發(fā)表于 2025-3-26 00:54:21 | 只看該作者
,Die Erz?hlung in der Literaturwissenschaft,truct SVM prediction model according to the time series data. Comparing with the traditional time series prediction model, SVM prediction models can reveal non-linear, non-stationary and randomness of the time series, and have higher prediction accuracy.
27#
發(fā)表于 2025-3-26 06:13:38 | 只看該作者
Jan Shaw,Philippa Kelly,L. E. Semleronstruction of FP-tree and the discovery of frequent itemsets can be realized simultaneously. Compared with FP-growth, it is not necessary to mine frequent itemsets after the construction of the whole FP-tree in Dynamic-prune. Experimental results show Dynamic-prune is efficient and scalable.
28#
發(fā)表于 2025-3-26 08:56:56 | 只看該作者
29#
發(fā)表于 2025-3-26 13:35:17 | 只看該作者
1865-0929 rnational Symposium on Intelligence Computation and Applications, ISICA 2012, held in Wuhan, China, in October 2012. The 72 revised full papers presented were carefully reviewed and selected from numerous submissions. The papers are organized in topical sections on artificial life, adaptive behavior
30#
發(fā)表于 2025-3-26 17:10:21 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-19 09:20
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
宣城市| 特克斯县| 新民市| 隆回县| 普兰店市| 大姚县| 福州市| 汽车| 凤阳县| 蚌埠市| 繁昌县| 延吉市| 蒙阴县| 东莞市| 成都市| 凌云县| 临武县| 邹城市| 辽阳市| 克什克腾旗| 水城县| 垫江县| 杭州市| 阿克陶县| 剑阁县| 恩施市| 永济市| 江油市| 安徽省| 石嘴山市| 永城市| 阿合奇县| 永年县| 谷城县| 榆社县| 迁西县| 武川县| 丰镇市| 南投市| 江北区| 治多县|