找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computational Intelligence and Bioinformatics; International Confer De-Shuang Huang,Kang Li,George William Irwin Conference proceedings 200

[復(fù)制鏈接]
樓主: tornado
21#
發(fā)表于 2025-3-25 03:21:39 | 只看該作者
Ant Colony System for Optimizing Vehicle Routing Problem with Time Windows (VRPTW)nt colonies to successively achieve a multiple objective minimization. Experiments on a series of benchmark problems demonstrate the excellent performance of ACS when compared with other optimization methods.
22#
發(fā)表于 2025-3-25 08:41:41 | 只看該作者
A New Hybrid Algorithm of Particle Swarm Optimizationces the ability of getting rid of local optimum and improves the speed and precision of convergence. The testing results of several benchmark functions with different dimensions show that the proposed algorithm is superior to standard PSO and the other PSO algorithms.
23#
發(fā)表于 2025-3-25 11:43:03 | 只看該作者
24#
發(fā)表于 2025-3-25 17:11:03 | 只看該作者
25#
發(fā)表于 2025-3-25 21:10:00 | 只看該作者
26#
發(fā)表于 2025-3-26 01:36:03 | 只看該作者
An Improved Particle Swarm Optimization Algorithm with Disturbance Terming structure effectively mends the defects. The convergence of the improved algorithm is analyzed. Simulation results demonstrated that the improved algorithm have a better performance than the standard one.
27#
發(fā)表于 2025-3-26 05:32:12 | 只看該作者
28#
發(fā)表于 2025-3-26 09:37:51 | 只看該作者
Improving Quantum-Behaved Particle Swarm Optimization by Simulated Annealingloys both the ability to jump out of the local minima in Simulated Annealing and the capacity of searching the global optimum in QPSO algorithm. The experimental results show that the proposed hybrid algorithm increases the diversity of the population in the search process and improves its precision in the latter period of the search.
29#
發(fā)表于 2025-3-26 14:04:18 | 只看該作者
Predicted-Velocity Particle Swarm Optimization Using Game-Theoretic Approachme-theoretic approach for designing particle swarm optimization with a mixed strategy. The approach is applied to design a mixed strategy using velocity and position vectors. The experimental results show the mixed strategy can obtain the better performance than the best of pure strategy.
30#
發(fā)表于 2025-3-26 19:37:30 | 只看該作者
Collective Behavior of an Anisotropic Swarm Model Based on Unbounded Repulsion in Social Potential Fits anisotropy coefficient, and the collective behavior of mass individuals emerges from combination of the inter-individual interactions and the interaction of the individual with outer circumstances.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 12:57
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
射洪县| 泾源县| 习水县| 普兰店市| 贵港市| 东乡| 紫阳县| 资溪县| 惠州市| 刚察县| 吉木乃县| 临沧市| 波密县| 凤庆县| 常熟市| 林甸县| 东乌珠穆沁旗| 苗栗县| 哈巴河县| 乐昌市| 周宁县| 盖州市| 车致| 五华县| 青海省| 日喀则市| 莱阳市| 新和县| 内江市| 文安县| 邵东县| 三都| 石首市| 莎车县| 龙州县| 吕梁市| 瓮安县| 浙江省| 南安市| 加查县| 东宁县|