找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Computational Intelligence and Bioinformatics; International Confer De-Shuang Huang,Kang Li,George William Irwin Conference proceedings 200

[復(fù)制鏈接]
樓主: tornado
21#
發(fā)表于 2025-3-25 03:21:39 | 只看該作者
Ant Colony System for Optimizing Vehicle Routing Problem with Time Windows (VRPTW)nt colonies to successively achieve a multiple objective minimization. Experiments on a series of benchmark problems demonstrate the excellent performance of ACS when compared with other optimization methods.
22#
發(fā)表于 2025-3-25 08:41:41 | 只看該作者
A New Hybrid Algorithm of Particle Swarm Optimizationces the ability of getting rid of local optimum and improves the speed and precision of convergence. The testing results of several benchmark functions with different dimensions show that the proposed algorithm is superior to standard PSO and the other PSO algorithms.
23#
發(fā)表于 2025-3-25 11:43:03 | 只看該作者
24#
發(fā)表于 2025-3-25 17:11:03 | 只看該作者
25#
發(fā)表于 2025-3-25 21:10:00 | 只看該作者
26#
發(fā)表于 2025-3-26 01:36:03 | 只看該作者
An Improved Particle Swarm Optimization Algorithm with Disturbance Terming structure effectively mends the defects. The convergence of the improved algorithm is analyzed. Simulation results demonstrated that the improved algorithm have a better performance than the standard one.
27#
發(fā)表于 2025-3-26 05:32:12 | 只看該作者
28#
發(fā)表于 2025-3-26 09:37:51 | 只看該作者
Improving Quantum-Behaved Particle Swarm Optimization by Simulated Annealingloys both the ability to jump out of the local minima in Simulated Annealing and the capacity of searching the global optimum in QPSO algorithm. The experimental results show that the proposed hybrid algorithm increases the diversity of the population in the search process and improves its precision in the latter period of the search.
29#
發(fā)表于 2025-3-26 14:04:18 | 只看該作者
Predicted-Velocity Particle Swarm Optimization Using Game-Theoretic Approachme-theoretic approach for designing particle swarm optimization with a mixed strategy. The approach is applied to design a mixed strategy using velocity and position vectors. The experimental results show the mixed strategy can obtain the better performance than the best of pure strategy.
30#
發(fā)表于 2025-3-26 19:37:30 | 只看該作者
Collective Behavior of an Anisotropic Swarm Model Based on Unbounded Repulsion in Social Potential Fits anisotropy coefficient, and the collective behavior of mass individuals emerges from combination of the inter-individual interactions and the interaction of the individual with outer circumstances.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 20:38
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
克东县| 平顶山市| 启东市| 苏尼特左旗| 雷山县| 漳州市| 松阳县| 犍为县| 新竹县| 田阳县| 天全县| 阳朔县| 五峰| 榕江县| 潼南县| 崇阳县| 枣庄市| 乌拉特后旗| 兴仁县| 惠州市| 邵武市| 永宁县| 光山县| 伊宁县| 和平县| 华阴市| 汨罗市| 金溪县| 循化| 霞浦县| 罗甸县| 三江| 屯门区| 桃园县| 潮州市| 江西省| 秦安县| 卓尼县| 大名县| 宁都县| 广水市|