找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Computational Intelligence Methods for Bioinformatics and Biostatistics; 17th International M Davide Chicco,Angelo Facchiano,Paolo Cazzanig

[復(fù)制鏈接]
查看: 8616|回復(fù): 61
樓主
發(fā)表于 2025-3-21 17:23:20 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱Computational Intelligence Methods for Bioinformatics and Biostatistics
副標(biāo)題17th International M
編輯Davide Chicco,Angelo Facchiano,Paolo Cazzaniga
視頻videohttp://file.papertrans.cn/233/232394/232394.mp4
叢書(shū)名稱Lecture Notes in Computer Science
圖書(shū)封面Titlebook: Computational Intelligence Methods for Bioinformatics and Biostatistics; 17th International M Davide Chicco,Angelo Facchiano,Paolo Cazzanig
描述.This book constitutes revised selected papers from the 17th International Meeting on Computational Intelligence Methods for Bioinformatics and Biostatistics, CIBB 2021, which was held virtually during November 15–17, 2021..The 19 papers included in these proceedings were carefully reviewed and selected from 26 submissions, and they focus on bioinformatics, computational biology, health informatics, cheminformatics, biotechnology, biostatistics, and biomedical imaging..
出版日期Conference proceedings 2022
關(guān)鍵詞artificial intelligence; biostatistics; computational and systems biology; computer networks; computer s
版次1
doihttps://doi.org/10.1007/978-3-031-20837-9
isbn_softcover978-3-031-20836-2
isbn_ebook978-3-031-20837-9Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書(shū)目名稱Computational Intelligence Methods for Bioinformatics and Biostatistics影響因子(影響力)




書(shū)目名稱Computational Intelligence Methods for Bioinformatics and Biostatistics影響因子(影響力)學(xué)科排名




書(shū)目名稱Computational Intelligence Methods for Bioinformatics and Biostatistics網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Computational Intelligence Methods for Bioinformatics and Biostatistics網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Computational Intelligence Methods for Bioinformatics and Biostatistics被引頻次




書(shū)目名稱Computational Intelligence Methods for Bioinformatics and Biostatistics被引頻次學(xué)科排名




書(shū)目名稱Computational Intelligence Methods for Bioinformatics and Biostatistics年度引用




書(shū)目名稱Computational Intelligence Methods for Bioinformatics and Biostatistics年度引用學(xué)科排名




書(shū)目名稱Computational Intelligence Methods for Bioinformatics and Biostatistics讀者反饋




書(shū)目名稱Computational Intelligence Methods for Bioinformatics and Biostatistics讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

1票 100.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:11:39 | 只看該作者
Biochemische Individualit?t und Gichtects showing PLM (mainly restless legs syndrome patients). Despite its many simplifying assumptions—the strongest being the stationarity of the neural processes during night sleep—the model simulations are in remarkable agreement with the polysomnographically recorded data.
板凳
發(fā)表于 2025-3-22 00:44:39 | 只看該作者
https://doi.org/10.1007/978-3-642-94920-3 addition, automatic averaging and aligning of 2D-CNN gradient-based images is applied and shown to improve its biological meaning. The proposed model predicts soft biological brain ageing indicators with a six-class-balanced accuracy of . by using the anagraphic age of 1100 healthy subjects in comparison to their brain scans.
地板
發(fā)表于 2025-3-22 07:15:08 | 只看該作者
Real-Time Automatic Plankton Detection, Tracking and Classification on Raw Hologram,ideos of raw holograms. Experiments show that our pipeline based on YOLOv5 and SORT is fast (44 FPS) and can accurately detect and identify the plankton among 13 classes (97.6% mAP@0.5, 92% MOTA). Our method can be implemented to detect and count other microscopic objects in raw holograms.
5#
發(fā)表于 2025-3-22 10:52:17 | 只看該作者
The First , Model of Leg Movement Activity During Sleep,ects showing PLM (mainly restless legs syndrome patients). Despite its many simplifying assumptions—the strongest being the stationarity of the neural processes during night sleep—the model simulations are in remarkable agreement with the polysomnographically recorded data.
6#
發(fā)表于 2025-3-22 15:23:35 | 只看該作者
,Soft Brain Ageing Indicators Based on?Light-Weight LeNet-Like Neural Networks and?Localized 2D Brai addition, automatic averaging and aligning of 2D-CNN gradient-based images is applied and shown to improve its biological meaning. The proposed model predicts soft biological brain ageing indicators with a six-class-balanced accuracy of . by using the anagraphic age of 1100 healthy subjects in comparison to their brain scans.
7#
發(fā)表于 2025-3-22 19:34:57 | 只看該作者
8#
發(fā)表于 2025-3-22 21:28:51 | 只看該作者
9#
發(fā)表于 2025-3-23 05:13:07 | 只看該作者
,Summarizing Global SARS-CoV-2 Geographical Spread by?Phylogenetic Multitype Branching Models,ormation on the place of sampling of each strain. We find that even with such coarse–grained data the dominating transition rates exhibit weak similarities with the most popular, continent–level aggregated, airline passenger flight routes.
10#
發(fā)表于 2025-3-23 05:51:19 | 只看該作者
0302-9743 d and selected from 26 submissions, and they focus on bioinformatics, computational biology, health informatics, cheminformatics, biotechnology, biostatistics, and biomedical imaging..978-3-031-20836-2978-3-031-20837-9Series ISSN 0302-9743 Series E-ISSN 1611-3349
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 13:03
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
阿尔山市| 古交市| 阜城县| 晋城| 昂仁县| 宣威市| 延长县| 肇州县| 南郑县| 大宁县| 沾化县| 皮山县| 鲁山县| 娄底市| 临澧县| 潼南县| 聊城市| 黄山市| 潞城市| 平果县| 睢宁县| 建湖县| 滦南县| 临泽县| 濮阳市| 万全县| 亚东县| 南昌市| 吐鲁番市| 勐海县| 永定县| 葵青区| 遂宁市| 伊春市| 阳山县| 蓝田县| 宁武县| 乐安县| 师宗县| 波密县| 嘉义市|