找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computational Intelligence; 11th International J Juan Julián Merelo,Jonathan Garibaldi,Kurosh Madan Conference proceedings 2021 Springer Na

[復(fù)制鏈接]
樓主: broach
41#
發(fā)表于 2025-3-28 15:58:23 | 只看該作者
Niching-Based Feature Selection with Multi-tree Genetic Programming for Dynamic Flexible Job Shop Sc and by comparing the different methods in a larger experimental setup. The results show that feature selection can generate better rules in most of the cases while also being more efficient to in a production environment.
42#
發(fā)表于 2025-3-28 21:48:30 | 只看該作者
Correlation Analysis Via Intuitionistic Fuzzy Modal and Aggregation Operatorsity and possibility modal operators along with intuitionistic fuzzy t-norms and t-conorms are investigated by verifying the conditions under which A-CC preserve the main properties related to conjugate and complement operations performed on A-IFS.
43#
發(fā)表于 2025-3-28 23:23:45 | 只看該作者
44#
發(fā)表于 2025-3-29 03:48:23 | 只看該作者
Towards a Class-Aware Information Granulation for Graph Embedding and Classificationormance improvements when considering also the ground-truth class labels in the information granulation procedure. Furthermore, since the granulation procedure is based on random walks, it is also very appealing in Big Data scenarios.
45#
發(fā)表于 2025-3-29 10:27:24 | 只看該作者
Deep Convolutional Neural Network Processing of Images for Obstacle Avoidancein the lab by a human operator. The network learned the correct responses of left, right, or straight for each of the images with a very low error rate when checked on test images. In addition, ten tests on the actual robot showed that it could successfully and consistently drive through the lab while avoiding obstacles.
46#
發(fā)表于 2025-3-29 14:52:42 | 只看該作者
47#
發(fā)表于 2025-3-29 16:09:37 | 只看該作者
48#
發(fā)表于 2025-3-29 20:11:08 | 只看該作者
49#
發(fā)表于 2025-3-30 02:15:40 | 只看該作者
https://doi.org/10.1007/978-3-642-69591-9n opens doors for a sampling version of the algorithm, which we call CVaR Q-learning. In order to allow optimizing CVaR on large state spaces, we also formulate loss functions that are later used in a deep learning context. Proposed methods are theoretically analyzed and experimentally verified.
50#
發(fā)表于 2025-3-30 07:37:40 | 只看該作者
CVaR Q-Learningn opens doors for a sampling version of the algorithm, which we call CVaR Q-learning. In order to allow optimizing CVaR on large state spaces, we also formulate loss functions that are later used in a deep learning context. Proposed methods are theoretically analyzed and experimentally verified.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 23:54
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
漠河县| 甘肃省| 皮山县| 三门峡市| 承德县| 河间市| 威信县| 监利县| 青州市| 太仆寺旗| 三河市| 饶阳县| 镇康县| 新巴尔虎右旗| 加查县| 唐山市| 韩城市| 仙居县| 大兴区| 江门市| 军事| 菏泽市| 永德县| 紫云| 平和县| 华池县| 泗阳县| 台江县| 巴楚县| 西城区| 安阳县| 沐川县| 井研县| 宁强县| 苗栗市| 东乌珠穆沁旗| 田林县| 攀枝花市| 拜泉县| 丹阳市| 云南省|