找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computational Homology; Tomasz Kaczynski,Konstantin Mischaikow,Marian Mroz Textbook 2004 Springer Science+Business Media New York 2004 Alg

[復(fù)制鏈接]
樓主: 灰塵
21#
發(fā)表于 2025-3-25 03:41:04 | 只看該作者
22#
發(fā)表于 2025-3-25 08:09:05 | 只看該作者
Computing Homology of MapsIn Chapter 6 we have provided a theoretical construction for producing a homology map .: .(.) → .(.) given an arbitrary continuous function . between cubical sets . ? R. and . ? R.. In this chapter we provide algorithms that allow us to use the computer to obtain ..
23#
發(fā)表于 2025-3-25 14:29:37 | 只看該作者
24#
發(fā)表于 2025-3-25 19:31:51 | 只看該作者
25#
發(fā)表于 2025-3-25 20:17:17 | 只看該作者
26#
發(fā)表于 2025-3-26 03:47:40 | 只看該作者
27#
發(fā)表于 2025-3-26 06:16:05 | 只看該作者
Homology of Topological Polyhedraand 10, where we are required to work with large sets of data and for which we need a computationally effective means of computing homology. In all these examples the data itself naturally generates cubical sets. However, this cubical homology theory is unconventional, and furthermore, there is a wide variety of other homology theories available.
28#
發(fā)表于 2025-3-26 10:32:42 | 只看該作者
29#
發(fā)表于 2025-3-26 15:41:54 | 只看該作者
30#
發(fā)表于 2025-3-26 19:37:41 | 只看該作者
https://doi.org/10.1007/978-3-540-24808-8d .(.) for some simple examples and discussed the method of elementary collapse, which can be used in special cases to compute these groups. In this chapter we want to go further and argue that the homology groups of any cubical set are computable. In fact, we will derive Algorithm 3.78, which, give
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 05:01
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
井冈山市| 衢州市| 绥德县| 叙永县| 卓资县| 鹤岗市| 藁城市| 宜城市| 车致| 万宁市| 千阳县| 公主岭市| 安阳县| 郑州市| 南汇区| 眉山市| 鄂温| 本溪市| 新邵县| 晋州市| 左云县| 涟水县| 黄山市| 鸡东县| 且末县| 栾城县| 弥勒县| 岳阳市| 乌拉特中旗| 台湾省| 纳雍县| 伊川县| 馆陶县| 崇文区| 栾城县| 梓潼县| 法库县| 勃利县| 杂多县| 横山县| 瑞昌市|