找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computational Homology; Tomasz Kaczynski,Konstantin Mischaikow,Marian Mroz Textbook 2004 Springer Science+Business Media New York 2004 Alg

[復(fù)制鏈接]
樓主: 灰塵
21#
發(fā)表于 2025-3-25 03:41:04 | 只看該作者
22#
發(fā)表于 2025-3-25 08:09:05 | 只看該作者
Computing Homology of MapsIn Chapter 6 we have provided a theoretical construction for producing a homology map .: .(.) → .(.) given an arbitrary continuous function . between cubical sets . ? R. and . ? R.. In this chapter we provide algorithms that allow us to use the computer to obtain ..
23#
發(fā)表于 2025-3-25 14:29:37 | 只看該作者
24#
發(fā)表于 2025-3-25 19:31:51 | 只看該作者
25#
發(fā)表于 2025-3-25 20:17:17 | 只看該作者
26#
發(fā)表于 2025-3-26 03:47:40 | 只看該作者
27#
發(fā)表于 2025-3-26 06:16:05 | 只看該作者
Homology of Topological Polyhedraand 10, where we are required to work with large sets of data and for which we need a computationally effective means of computing homology. In all these examples the data itself naturally generates cubical sets. However, this cubical homology theory is unconventional, and furthermore, there is a wide variety of other homology theories available.
28#
發(fā)表于 2025-3-26 10:32:42 | 只看該作者
29#
發(fā)表于 2025-3-26 15:41:54 | 只看該作者
30#
發(fā)表于 2025-3-26 19:37:41 | 只看該作者
https://doi.org/10.1007/978-3-540-24808-8d .(.) for some simple examples and discussed the method of elementary collapse, which can be used in special cases to compute these groups. In this chapter we want to go further and argue that the homology groups of any cubical set are computable. In fact, we will derive Algorithm 3.78, which, give
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 05:01
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
宜州市| 山西省| 巴林右旗| 汝城县| 保靖县| 康平县| 增城市| 苗栗市| 肇东市| 南充市| 繁昌县| 安阳县| 忻城县| 池州市| 文登市| 新郑市| 万安县| 磐安县| 宜兴市| 牙克石市| 神木县| 武定县| 工布江达县| 龙游县| 巫山县| 淮安市| 麟游县| 鞍山市| 宁远县| 易门县| 土默特左旗| 探索| 连江县| 汤原县| 大埔县| 武威市| 罗城| 新河县| 南宫市| 张北县| 白朗县|