找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computational Geometry and Graphs; Thailand-Japan Joint Jin Akiyama,Mikio Kano,Toshinori Sakai Conference proceedings 2013 Springer-Verlag

[復制鏈接]
樓主: 導彈
31#
發(fā)表于 2025-3-26 23:39:36 | 只看該作者
Random Sets (in Particular Boolean Models),of flow enter edge .?=?(., .) at ., then .(.) .(.) units of flow arrive at .. Since relation extraction, which is an important application of the problem, uses large networks such as Wikipedia and DBLP, the computation time to solve the problem is important. However, conventional algorithms for the
32#
發(fā)表于 2025-3-27 04:53:20 | 只看該作者
33#
發(fā)表于 2025-3-27 07:21:49 | 只看該作者
34#
發(fā)表于 2025-3-27 13:24:32 | 只看該作者
Jin Akiyama,Mikio Kano,Toshinori SakaiHigh quality selected papers.Unique visibility.State of the art research
35#
發(fā)表于 2025-3-27 17:25:25 | 只看該作者
36#
發(fā)表于 2025-3-27 18:54:21 | 只看該作者
The Number of Diagonal Transformations in Quadrangulations on the Sphere, unique bipartition .(.)?=?.?∪?., where we call (|.|,|.|) the . of .. In this article, we shall prove that any two quadrangulations . and .′ with the same bipartition size can be transformed into each other by at most 10|.|?+?16|.|???64 diagonal slides.
37#
發(fā)表于 2025-3-28 01:09:42 | 只看該作者
A Necessary and Sufficient Condition for a Bipartite Distance-Hereditary Graph to Be Hamiltonian,e similar to the well known Hall’s theorem, which concerns the existence of a perfect matching. Based on the condition we also give a polynomial-time algorithm for the Hamilton cycle problem on bipartite distance-hereditary graphs.
38#
發(fā)表于 2025-3-28 05:40:11 | 只看該作者
39#
發(fā)表于 2025-3-28 09:16:26 | 只看該作者
https://doi.org/10.1007/978-3-642-45281-9bipartite graphs; information networks; planar graphs; point sets; trees; algorithm analysis and problem
40#
發(fā)表于 2025-3-28 10:48:59 | 只看該作者
978-3-642-45280-2Springer-Verlag Berlin Heidelberg 2013
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-31 08:18
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
鲜城| 莱芜市| 景洪市| 富平县| 资阳市| 鄱阳县| 仪征市| 淮北市| 五常市| 江源县| 额济纳旗| 汕头市| 垣曲县| 涞源县| 镇赉县| 思茅市| 奉新县| 临泉县| 四平市| 绥棱县| 黄陵县| 鄂尔多斯市| 临湘市| 甘谷县| 抚州市| 双峰县| 鹤峰县| 阿城市| 常熟市| 白水县| 左权县| 宁远县| 和田市| 榕江县| 霍城县| 桦川县| 襄城县| 承德市| 遂溪县| 丁青县| 大埔区|