找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computational Geometry and Graphs; Thailand-Japan Joint Jin Akiyama,Mikio Kano,Toshinori Sakai Conference proceedings 2013 Springer-Verlag

[復(fù)制鏈接]
樓主: 導(dǎo)彈
21#
發(fā)表于 2025-3-25 05:15:24 | 只看該作者
22#
發(fā)表于 2025-3-25 10:28:15 | 只看該作者
Stochastic Games and Related Conceptsrov, we show that there is no .-universal point set of size ., for any .?≥?15. Conversely, we use a computer program to show that there exist universal point sets for all .?≤?10 and to enumerate all corresponding order types. Finally, we describe a collection . of 7′393 planar graphs on 35 vertices
23#
發(fā)表于 2025-3-25 15:38:10 | 只看該作者
24#
發(fā)表于 2025-3-25 18:41:28 | 只看該作者
25#
發(fā)表于 2025-3-25 22:45:15 | 只看該作者
Jean-Fran?ois Coeurjolly,Frédéric Lavancierse games, each player colors one specified cell in his/her turn, and all connected neighbor cells of the same color are also colored by the color. This flooding or coloring spreads on the same color cells. It is natural to consider the coloring games on general graphs: Once a vertex is colored, the
26#
發(fā)表于 2025-3-26 03:59:27 | 只看該作者
27#
發(fā)表于 2025-3-26 06:41:08 | 只看該作者
https://doi.org/10.1007/3-540-38174-0instra proved that if a connected graph . satisfies . .(.)?≥?|.|???.?+?1 for an integer .?≥?2, then . has a spanning tree having at most . leaves. In this paper we improve this result as follows. If a connected graph . satisfies . .(.)?≥?|.|???.?+?1 and |.|?≥?3.???10 for an integer .?≥?2, then . has
28#
發(fā)表于 2025-3-26 12:10:24 | 只看該作者
29#
發(fā)表于 2025-3-26 13:40:30 | 只看該作者
30#
發(fā)表于 2025-3-26 17:50:47 | 只看該作者
https://doi.org/10.1007/3-540-38174-0ength diam(.), whose every vertex belongs to ., is .. We prove this statement under the condition that any two of the simplices share at least .???2 vertices. It is left as an open question to decide whether this condition is always satisfied. We also establish upper bounds on the number of all 2- a
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-31 19:05
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
即墨市| 乐安县| 洮南市| 昌吉市| 宁乡县| 陵水| 泸定县| 康乐县| 赤壁市| 北辰区| 广宗县| 偏关县| 于田县| 白玉县| 闻喜县| 武功县| 金湖县| 佛坪县| 灵璧县| 澎湖县| 湘潭县| 敦煌市| 蒙阴县| 镇康县| 开原市| 泾源县| 新密市| 贵州省| 故城县| 鹤壁市| 马尔康县| 高淳县| 宣威市| 堆龙德庆县| 河南省| 惠来县| 宝鸡市| 基隆市| 嘉义市| 梁河县| 磐安县|