找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computational Genomic Signatures; Ozkan Ufuk Nalbantoglu,Khalid Sayood Book 2011 Springer Nature Switzerland AG 2011

[復(fù)制鏈接]
樓主: Monomania
21#
發(fā)表于 2025-3-25 03:36:57 | 只看該作者
1930-0328 ction of horizontal gene transfer. Table of Contents: Genome Signatures, Definition and Background / Other Computational Characterizations as Genome Signatures 978-3-031-00522-0978-3-031-01650-9Series ISSN 1930-0328 Series E-ISSN 1930-0336
22#
發(fā)表于 2025-3-25 10:21:48 | 只看該作者
1930-0328 is an urgent need for algorithms for data processing and quantitative reasoning. An emerging in silico approach, called computational genomic signatures, addresses this need by representing global species-specific features of genomes using simple mathematical models. This text introduces the genera
23#
發(fā)表于 2025-3-25 12:40:19 | 只看該作者
24#
發(fā)表于 2025-3-25 19:15:15 | 只看該作者
25#
發(fā)表于 2025-3-25 21:44:28 | 只看該作者
26#
發(fā)表于 2025-3-26 00:45:49 | 只看該作者
27#
發(fā)表于 2025-3-26 05:18:02 | 只看該作者
Other Computational Characterizations as Genome Signatures,sufficiently long arbitrary genomic sequences, both dinucleotide abundance ratios and chaos game representations belong to the same class of signatures. They are both deducible from oligonucleotide frequency vectors and are instances of projections in the component space as discussed previously.
28#
發(fā)表于 2025-3-26 12:21:49 | 只看該作者
Summary and Potential Applicationssufficiently long arbitrary genomic sequences, both dinucleotide abundance ratios and chaos game representations belong to the same class of signatures. They are both deducible from oligonucleotide frequency vectors and are instances of projections in the component space as discussed previously.
29#
發(fā)表于 2025-3-26 16:18:36 | 只看該作者
Book 2011ent need for algorithms for data processing and quantitative reasoning. An emerging in silico approach, called computational genomic signatures, addresses this need by representing global species-specific features of genomes using simple mathematical models. This text introduces the general concept
30#
發(fā)表于 2025-3-26 16:49:47 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-20 13:31
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
且末县| 灵石县| 桃园市| 榕江县| 石景山区| 永年县| 大悟县| 峨眉山市| 常熟市| 丹凤县| 长垣县| 穆棱市| 阿克陶县| 通州区| 三门峡市| 织金县| 随州市| 义乌市| 洪雅县| 靖江市| 绥江县| 临桂县| 涿鹿县| 安阳县| 谢通门县| 阿鲁科尔沁旗| 格尔木市| 聊城市| 九台市| 罗定市| 克拉玛依市| 大洼县| 建瓯市| 黔江区| 庆城县| 灵石县| 建宁县| 河津市| 灌南县| 会昌县| 辉县市|