找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computational Genomic Signatures; Ozkan Ufuk Nalbantoglu,Khalid Sayood Book 2011 Springer Nature Switzerland AG 2011

[復(fù)制鏈接]
樓主: Monomania
21#
發(fā)表于 2025-3-25 03:36:57 | 只看該作者
1930-0328 ction of horizontal gene transfer. Table of Contents: Genome Signatures, Definition and Background / Other Computational Characterizations as Genome Signatures 978-3-031-00522-0978-3-031-01650-9Series ISSN 1930-0328 Series E-ISSN 1930-0336
22#
發(fā)表于 2025-3-25 10:21:48 | 只看該作者
1930-0328 is an urgent need for algorithms for data processing and quantitative reasoning. An emerging in silico approach, called computational genomic signatures, addresses this need by representing global species-specific features of genomes using simple mathematical models. This text introduces the genera
23#
發(fā)表于 2025-3-25 12:40:19 | 只看該作者
24#
發(fā)表于 2025-3-25 19:15:15 | 只看該作者
25#
發(fā)表于 2025-3-25 21:44:28 | 只看該作者
26#
發(fā)表于 2025-3-26 00:45:49 | 只看該作者
27#
發(fā)表于 2025-3-26 05:18:02 | 只看該作者
Other Computational Characterizations as Genome Signatures,sufficiently long arbitrary genomic sequences, both dinucleotide abundance ratios and chaos game representations belong to the same class of signatures. They are both deducible from oligonucleotide frequency vectors and are instances of projections in the component space as discussed previously.
28#
發(fā)表于 2025-3-26 12:21:49 | 只看該作者
Summary and Potential Applicationssufficiently long arbitrary genomic sequences, both dinucleotide abundance ratios and chaos game representations belong to the same class of signatures. They are both deducible from oligonucleotide frequency vectors and are instances of projections in the component space as discussed previously.
29#
發(fā)表于 2025-3-26 16:18:36 | 只看該作者
Book 2011ent need for algorithms for data processing and quantitative reasoning. An emerging in silico approach, called computational genomic signatures, addresses this need by representing global species-specific features of genomes using simple mathematical models. This text introduces the general concept
30#
發(fā)表于 2025-3-26 16:49:47 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-20 13:31
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
陆河县| 岑溪市| 女性| 勐海县| 萨迦县| 东明县| 高安市| 晋宁县| 河曲县| 托克托县| 苏尼特左旗| 邢台市| 前郭尔| 乌兰浩特市| 红河县| 万源市| 万年县| 仲巴县| 苍南县| 天峻县| 华容县| 涞水县| 讷河市| 凭祥市| 富川| 繁昌县| 水城县| 丰城市| 雷波县| 通辽市| 将乐县| 监利县| 甘谷县| 阿拉善左旗| 穆棱市| 邵阳市| 中江县| 黄龙县| 玛曲县| 搜索| 朝阳县|