找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computational Genomic Signatures; Ozkan Ufuk Nalbantoglu,Khalid Sayood Book 2011 Springer Nature Switzerland AG 2011

[復(fù)制鏈接]
樓主: Monomania
21#
發(fā)表于 2025-3-25 03:36:57 | 只看該作者
1930-0328 ction of horizontal gene transfer. Table of Contents: Genome Signatures, Definition and Background / Other Computational Characterizations as Genome Signatures 978-3-031-00522-0978-3-031-01650-9Series ISSN 1930-0328 Series E-ISSN 1930-0336
22#
發(fā)表于 2025-3-25 10:21:48 | 只看該作者
1930-0328 is an urgent need for algorithms for data processing and quantitative reasoning. An emerging in silico approach, called computational genomic signatures, addresses this need by representing global species-specific features of genomes using simple mathematical models. This text introduces the genera
23#
發(fā)表于 2025-3-25 12:40:19 | 只看該作者
24#
發(fā)表于 2025-3-25 19:15:15 | 只看該作者
25#
發(fā)表于 2025-3-25 21:44:28 | 只看該作者
26#
發(fā)表于 2025-3-26 00:45:49 | 只看該作者
27#
發(fā)表于 2025-3-26 05:18:02 | 只看該作者
Other Computational Characterizations as Genome Signatures,sufficiently long arbitrary genomic sequences, both dinucleotide abundance ratios and chaos game representations belong to the same class of signatures. They are both deducible from oligonucleotide frequency vectors and are instances of projections in the component space as discussed previously.
28#
發(fā)表于 2025-3-26 12:21:49 | 只看該作者
Summary and Potential Applicationssufficiently long arbitrary genomic sequences, both dinucleotide abundance ratios and chaos game representations belong to the same class of signatures. They are both deducible from oligonucleotide frequency vectors and are instances of projections in the component space as discussed previously.
29#
發(fā)表于 2025-3-26 16:18:36 | 只看該作者
Book 2011ent need for algorithms for data processing and quantitative reasoning. An emerging in silico approach, called computational genomic signatures, addresses this need by representing global species-specific features of genomes using simple mathematical models. This text introduces the general concept
30#
發(fā)表于 2025-3-26 16:49:47 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-20 16:06
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
扶风县| 松滋市| 宁南县| 余江县| 灵山县| 镇巴县| 图木舒克市| 绥宁县| 舞钢市| 沾益县| 甘泉县| 伊宁市| 秦皇岛市| 电白县| 象州县| 石渠县| 平凉市| 两当县| 陆川县| 天长市| 微山县| 张北县| 会宁县| 兴仁县| 莒南县| 黄龙县| 福建省| 馆陶县| 贵阳市| 中宁县| 文成县| 阿瓦提县| 永福县| 洪泽县| 庆城县| 保定市| 金坛市| 五家渠市| 香河县| 永春县| 临洮县|