找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computational Fluid Dynamics 2010; Proceedings of the S Alexander Kuzmin Conference proceedings 2011 Springer-Verlag Berlin Heidelberg 2011

[復制鏈接]
樓主: ACE313
41#
發(fā)表于 2025-3-28 16:09:30 | 只看該作者
42#
發(fā)表于 2025-3-28 22:07:25 | 只看該作者
43#
發(fā)表于 2025-3-29 00:46:09 | 只看該作者
An Example of the Singular Coupling Limit,lations for description of the dispersed phase while the properties of the fluid remain calculated with the Eulerian approach. For that purpose we introduce a relaxation model in order to stabilize approximations of the Eulerian part of the particle phase. We present an analytic validation and numer
44#
發(fā)表于 2025-3-29 03:15:26 | 只看該作者
45#
發(fā)表于 2025-3-29 11:19:05 | 只看該作者
Franco Fagnola,Rolando Rebolledoalance equation (PBE) can be used to describe the evolution of the dispersed phase. Nevertheless, this is computationally demanding. The present work extends previous work by applying a spectral element method of a least squares type to solve this equation when studying three-dimensional transient m
46#
發(fā)表于 2025-3-29 12:47:01 | 只看該作者
47#
發(fā)表于 2025-3-29 15:46:26 | 只看該作者
Stochastic Analysis and Related TopicsWe compare the reformulated scheme of this chapter with the original Osher scheme on a series of test problems for the one-dimensional Euler equations for ideal gases, concluding that the present solver is simpler, more robust, more accurate and can be applied to any hyperbolic system.
48#
發(fā)表于 2025-3-29 21:11:31 | 只看該作者
49#
發(fā)表于 2025-3-30 02:53:55 | 只看該作者
L. Bertini,N. Cancrini,G. Jona-Lasinioreconstruction is exposed briefly and its applications to the Euler equations are presented through several test cases to assess its accuracy and stability. Comparisons with classical methods such as MUSCL show the superiority of SVM. The SVM method arises as a high-order accurate scheme, geometrically flexible and computationally efficient.
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 17:48
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
于都县| 盘锦市| 囊谦县| 长葛市| 长寿区| 邹平县| 乃东县| 黑河市| 灵宝市| 新疆| 濮阳市| 苗栗县| 河北省| 宁都县| 南皮县| 深水埗区| 静安区| 来凤县| 石首市| 江山市| 西贡区| 扶绥县| 改则县| 郁南县| 莱西市| 伊川县| 乌兰察布市| 合作市| 武鸣县| 大宁县| 石林| 桂平市| 驻马店市| 邳州市| 绥阳县| 罗定市| 锦屏县| 钟祥市| 新龙县| 皋兰县| 田阳县|