找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computational Fluid Dynamics 2010; Proceedings of the S Alexander Kuzmin Conference proceedings 2011 Springer-Verlag Berlin Heidelberg 2011

[復(fù)制鏈接]
樓主: ACE313
11#
發(fā)表于 2025-3-23 11:53:48 | 只看該作者
Runge–Kutta Discontinuous Galerkin Method for Multi–phase Compressible Flowsd for conservative systems, whereas the system of interest is not conservative. We show how to circumvent this difficulty, and prove the accuracy and the robustness of our method on one and two dimensional numerical tests.
12#
發(fā)表于 2025-3-23 14:48:20 | 只看該作者
13#
發(fā)表于 2025-3-23 19:21:06 | 只看該作者
14#
發(fā)表于 2025-3-24 01:37:33 | 只看該作者
15#
發(fā)表于 2025-3-24 02:56:46 | 只看該作者
The Expanding Role of Applications in the Development and Validation of CFD at NASA its unforeseen benefits are discussed and tied to specific operational examples. There are distinct advantages for the CFD developer that is able to operate in this paradigm, and recommendations are provided for those inclined and willing to work in this environment.
16#
發(fā)表于 2025-3-24 09:09:18 | 只看該作者
17#
發(fā)表于 2025-3-24 13:37:41 | 只看該作者
Stochastic Analysis and Mathematical Physicsn the conventional counterparts. Numerical results show that the new ESWENO schemes are stable and significantly outperform the corresponding WENO schemes of Jiang and Shu in terms of accuracy, while providing essentially non-oscillatory solutions near strong discontinuities.
18#
發(fā)表于 2025-3-24 15:59:34 | 只看該作者
Energy Stable WENO Schemes of Arbitrary Ordern the conventional counterparts. Numerical results show that the new ESWENO schemes are stable and significantly outperform the corresponding WENO schemes of Jiang and Shu in terms of accuracy, while providing essentially non-oscillatory solutions near strong discontinuities.
19#
發(fā)表于 2025-3-24 21:50:38 | 只看該作者
20#
發(fā)表于 2025-3-25 00:28:02 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 12:17
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
镇平县| 宁城县| 若羌县| 金平| 独山县| 商河县| 马公市| 福建省| 洛隆县| 吐鲁番市| 台湾省| 百色市| 顺昌县| 大安市| 陵水| 金溪县| 石景山区| 西贡区| 锡林浩特市| 灌云县| 铜梁县| 淳安县| 湘阴县| 乌审旗| 肇源县| 五河县| 昭觉县| 杭锦后旗| 南木林县| 大城县| 全椒县| 溆浦县| 宜良县| 昌宁县| 岳池县| 贞丰县| 清涧县| 三都| 中山市| 南漳县| 汤阴县|