找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computational Financial Mathematics using MATHEMATICA?; Optimal Trading in S Srdjan Stojanovic Textbook 2003 S. Stojanovic 2003 Mathematica

[復制鏈接]
樓主: Encomium
11#
發(fā)表于 2025-3-23 10:31:09 | 只看該作者
12#
發(fā)表于 2025-3-23 14:26:37 | 只看該作者
13#
發(fā)表于 2025-3-23 20:40:26 | 只看該作者
https://doi.org/10.1007/978-3-322-85217-5ons. Their possible exercise date is fixed in advance. On the other hand, the fact is that options that are usually traded on the option market can be exercised at any time before the expiry, although most often they are not. Such options are called American options. As seen so far, the problem of p
14#
發(fā)表于 2025-3-23 22:42:42 | 只看該作者
https://doi.org/10.1007/978-3-322-85217-5ng, and trading of stocks and options. Chapter 5 and 6 present some sophisticated ways as to how to analyze the market from the point of view of estimating the perceived stock volatilities. In Chapter 7 it was shown how mathematics and .? can be used for synthesizing the available information about
15#
發(fā)表于 2025-3-24 05:12:31 | 只看該作者
https://doi.org/10.1007/978-1-4612-0043-7Mathematica; Options; Portfolio; Portfolio Diversification; Portfolio Optimization; STATISTICA; Stochastic
16#
發(fā)表于 2025-3-24 07:51:34 | 只看該作者
17#
發(fā)表于 2025-3-24 11:10:47 | 只看該作者
Optimal Portfolio Rules,The classical portfolio theory goes back to Markowitz and his mean-variance portfolio theory. Portfolio theory based on stochastic control goes back to Merton’s classical paper in the early 70s [see, e.g., Ch. 5 of 46].
18#
發(fā)表于 2025-3-24 16:57:15 | 只看該作者
19#
發(fā)表于 2025-3-24 21:59:05 | 只看該作者
20#
發(fā)表于 2025-3-25 01:35:05 | 只看該作者
Computational Financial Mathematics using MATHEMATICA?Optimal Trading in S
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-19 07:29
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
重庆市| 宜阳县| 石城县| 涿州市| 施秉县| 页游| 定远县| 读书| 镇宁| 灌南县| 濮阳市| 楚雄市| 渭南市| 乌兰察布市| 探索| 新河县| 东阳市| 卫辉市| 榆社县| 北流市| 元阳县| 沧源| 固原市| 大洼县| SHOW| 承德县| 获嘉县| 广东省| 巴塘县| 封丘县| 汕尾市| 磴口县| 扎囊县| 鄂托克前旗| 平塘县| 娄底市| 罗源县| 汉中市| 甘泉县| 新晃| 来安县|