找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computational Excursions in Analysis and Number Theory; Peter Borwein Book 2002 Springer Science+Business Media New York 2002 Diophantine

[復(fù)制鏈接]
樓主: FLAK
31#
發(fā)表于 2025-3-26 23:54:45 | 只看該作者
Maximal Vanishing,The location of the zeros of Littlewood polynomials and related classes of low-height polynomials is subtle and interesting. The zeros cluster heavily around the unit circle and appear to form a set with fractal boundary.
32#
發(fā)表于 2025-3-27 03:06:26 | 只看該作者
33#
發(fā)表于 2025-3-27 07:27:37 | 只看該作者
34#
發(fā)表于 2025-3-27 13:20:11 | 只看該作者
Computational Excursions in Analysis and Number Theory978-0-387-21652-2Series ISSN 1613-5237 Series E-ISSN 2197-4152
35#
發(fā)表于 2025-3-27 15:01:41 | 只看該作者
36#
發(fā)表于 2025-3-27 18:02:40 | 只看該作者
Grundlagen des Stiftungsteuerrechts,rval. This is P1, and it is of a slightly different flavour than most of the other problems in this book, in that there is no restriction on the size of the coefficients. We now state P1 with greater precision.
37#
發(fā)表于 2025-3-28 00:51:53 | 只看該作者
https://doi.org/10.1007/978-3-8349-9310-6ct lists (repeats are allowed) of integers [..,…,..] and [....] such that.We will call this the Prouhet-Tarry-Escott Problem. We call . the size of the solution and . the degree. We abbreviate the above system by writing.
38#
發(fā)表于 2025-3-28 03:39:47 | 只看該作者
Stiftungen und soziale Innovationen,e, and when . 〈 2 it asks how large the .. norm can be. In both cases we are interested in how close these norms can be to the L. norm. Recall that the .. norm of a Littlewood polynomial of degree . is . That the behaviour changes at . 2 is expected from ., which gives, for 1 ≤ . 00 and .. + ... 1, that
39#
發(fā)表于 2025-3-28 06:43:43 | 只看該作者
40#
發(fā)表于 2025-3-28 13:50:12 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 15:00
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
通海县| 博罗县| 双城市| 宁海县| 建瓯市| 蚌埠市| 安庆市| 中西区| 格尔木市| 福建省| 阜宁县| 盐津县| 衡水市| 鄂托克前旗| 甘肃省| 胶州市| 渭源县| 安义县| 南开区| 仁化县| 沿河| 南安市| 仲巴县| 宁波市| 政和县| 吉木乃县| 阜阳市| 桑日县| 马边| 甘肃省| 伊宁县| 建昌县| 泌阳县| 宜宾县| 盐亭县| 亚东县| 志丹县| 宜君县| 湾仔区| 沿河| 凤庆县|