找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computational Epigenomics and Epitranscriptomics; Pedro H. Oliveira Book 2023 The Editor(s) (if applicable) and The Author(s), under exclu

[復(fù)制鏈接]
樓主: Abridge
21#
發(fā)表于 2025-3-25 06:08:26 | 只看該作者
https://doi.org/10.1007/978-3-642-93418-6utional layers to achieve simultaneously a large sequence context while interpreting the DNA sequence at single base pair resolution. Using transfer learning of convolutional weights trained to predict a compendium of chromatin features across cell types allows deepC to predict cell type-specific ch
22#
發(fā)表于 2025-3-25 07:32:11 | 只看該作者
23#
發(fā)表于 2025-3-25 14:07:48 | 只看該作者
24#
發(fā)表于 2025-3-25 17:52:44 | 只看該作者
https://doi.org/10.1007/978-3-658-28778-8cts activity for each gene, which can be used to integrate with transcriptome data from the same cell types. Here, we provide an overview of our method and detailed guidance on how to use it for the integration of methylome and transcriptome data.
25#
發(fā)表于 2025-3-25 22:52:20 | 只看該作者
Walter Bien,Angela Hartl,Markus Teubnerse of methylation information from neighboring sites to recover partially observed methylation patterns. Our method and software are proven to be faster and more accurate among all evaluated. Ultimately, our method allows for a more streamlined monitoring of epigenetic changes within cellular populations and their putative role in disease.
26#
發(fā)表于 2025-3-26 02:23:16 | 只看該作者
Integrating Single-Cell Methylome and Transcriptome Data with MAPLE,cts activity for each gene, which can be used to integrate with transcriptome data from the same cell types. Here, we provide an overview of our method and detailed guidance on how to use it for the integration of methylome and transcriptome data.
27#
發(fā)表于 2025-3-26 08:07:23 | 只看該作者
28#
發(fā)表于 2025-3-26 10:12:47 | 只看該作者
1064-3745 ation advice from the experts.This volume details state-of-the-art computational methods designed to manage, analyze, and generally leverage epigenomic and epitranscriptomic data. Chapters guide readers through fine-mapping and quantification of modifications, visual analytics, imputation methods, s
29#
發(fā)表于 2025-3-26 16:08:33 | 只看該作者
30#
發(fā)表于 2025-3-26 19:04:01 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 18:16
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
咸宁市| 高安市| 桦南县| 百色市| 汨罗市| 云梦县| 城固县| 曲沃县| 浦城县| 随州市| 水城县| 石台县| 绥棱县| 汽车| 白水县| 石家庄市| 靖安县| 自贡市| 台前县| 榆社县| 普安县| 云霄县| 阿拉尔市| 巩义市| 香港 | 巩留县| 滦平县| 息烽县| 崇仁县| 长治县| 钟山县| 阿巴嘎旗| 中超| 山阴县| 平定县| 古交市| 潮安县| 馆陶县| 蓬安县| 娱乐| 蓝田县|