找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computational Epigenomics and Epitranscriptomics; Pedro H. Oliveira Book 2023 The Editor(s) (if applicable) and The Author(s), under exclu

[復(fù)制鏈接]
樓主: Abridge
21#
發(fā)表于 2025-3-25 06:08:26 | 只看該作者
https://doi.org/10.1007/978-3-642-93418-6utional layers to achieve simultaneously a large sequence context while interpreting the DNA sequence at single base pair resolution. Using transfer learning of convolutional weights trained to predict a compendium of chromatin features across cell types allows deepC to predict cell type-specific ch
22#
發(fā)表于 2025-3-25 07:32:11 | 只看該作者
23#
發(fā)表于 2025-3-25 14:07:48 | 只看該作者
24#
發(fā)表于 2025-3-25 17:52:44 | 只看該作者
https://doi.org/10.1007/978-3-658-28778-8cts activity for each gene, which can be used to integrate with transcriptome data from the same cell types. Here, we provide an overview of our method and detailed guidance on how to use it for the integration of methylome and transcriptome data.
25#
發(fā)表于 2025-3-25 22:52:20 | 只看該作者
Walter Bien,Angela Hartl,Markus Teubnerse of methylation information from neighboring sites to recover partially observed methylation patterns. Our method and software are proven to be faster and more accurate among all evaluated. Ultimately, our method allows for a more streamlined monitoring of epigenetic changes within cellular populations and their putative role in disease.
26#
發(fā)表于 2025-3-26 02:23:16 | 只看該作者
Integrating Single-Cell Methylome and Transcriptome Data with MAPLE,cts activity for each gene, which can be used to integrate with transcriptome data from the same cell types. Here, we provide an overview of our method and detailed guidance on how to use it for the integration of methylome and transcriptome data.
27#
發(fā)表于 2025-3-26 08:07:23 | 只看該作者
28#
發(fā)表于 2025-3-26 10:12:47 | 只看該作者
1064-3745 ation advice from the experts.This volume details state-of-the-art computational methods designed to manage, analyze, and generally leverage epigenomic and epitranscriptomic data. Chapters guide readers through fine-mapping and quantification of modifications, visual analytics, imputation methods, s
29#
發(fā)表于 2025-3-26 16:08:33 | 只看該作者
30#
發(fā)表于 2025-3-26 19:04:01 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 00:04
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
湟中县| 仪陇县| 青川县| 吕梁市| 鄂托克旗| 烟台市| 兴国县| 和龙市| 遵化市| 仙桃市| 泸州市| 新竹县| 城步| 子洲县| 天峨县| 方城县| 毕节市| 旌德县| 霍林郭勒市| 正镶白旗| 交口县| 宣威市| 廉江市| 宁海县| 朔州市| 曲靖市| 沭阳县| 米林县| 龙泉市| 板桥市| 霍城县| 旌德县| 柳江县| 宕昌县| 邵武市| 子洲县| 睢宁县| 汪清县| 晋江市| 天全县| 富平县|