找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computational Epidemiology; Data-Driven Modeling Ellen Kuhl Textbook 2021 The Editor(s) (if applicable) and The Author(s), under exclusive

[復制鏈接]
樓主: 生手
21#
發(fā)表于 2025-3-25 04:32:47 | 只看該作者
ilistic programming. This book is a personal reflection on the role of data-driven modeling during the COVID-19 pandemic, motivated by the curiosity to understand it..978-3-030-82892-9978-3-030-82890-5
22#
發(fā)表于 2025-3-25 09:44:08 | 只看該作者
Wichard Woyke Dr. phil.,Udo Steffens of the COVID-19 pandemic. We compare the strengths and weaknesses of purely statistical and mechanistic models and illustrate how we can integrate the large volume of COVID-19 data into mechanistic compartment models to infer model parameters, learn correlations, and identify causation. The learnin
23#
發(fā)表于 2025-3-25 12:33:32 | 只看該作者
,M?glichkeiten und Grenzen von Wahlen, data for the SIS model, infer the posterior distribution of its parameter values, and illustrate the result using means and credible intervals. The learning objectives of this chapter on data-driven modeling are to
24#
發(fā)表于 2025-3-25 16:05:36 | 只看該作者
,M?glichkeiten und Grenzen von Wahlen,sit mobility for all 27 countries of the European Union, infer the dynamic reproduction number for each country, and correlate mobility and reproduction. The learning objectives of this chapter on data-driven modeling are to
25#
發(fā)表于 2025-3-25 22:14:50 | 只看該作者
26#
發(fā)表于 2025-3-26 03:14:11 | 只看該作者
27#
發(fā)表于 2025-3-26 07:06:59 | 只看該作者
Textbook 2021ata science, epidemiology, health sciences, machine learning, mathematical biology, numerical methods, and probabilistic programming. This book is a personal reflection on the role of data-driven modeling during the COVID-19 pandemic, motivated by the curiosity to understand it..
28#
發(fā)表于 2025-3-26 09:41:41 | 只看該作者
29#
發(fā)表于 2025-3-26 15:37:02 | 只看該作者
Introduction to data-driven epidemiology data for the SIS model, infer the posterior distribution of its parameter values, and illustrate the result using means and credible intervals. The learning objectives of this chapter on data-driven modeling are to
30#
發(fā)表于 2025-3-26 19:35:17 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 03:19
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
清水河县| 北流市| 桦川县| 胶南市| 黄梅县| 乌审旗| 彭州市| 合肥市| 岳阳县| 南雄市| 长海县| 盖州市| 湾仔区| 修水县| 内黄县| 海林市| 昌乐县| 怀远县| 赤水市| 邓州市| 隆化县| 英德市| 灌南县| 民勤县| 梅河口市| 郯城县| 津南区| 山东省| 定日县| 二连浩特市| 阳江市| 油尖旺区| 原平市| 柘城县| 烟台市| 高安市| 红安县| 梁河县| 阜城县| 无极县| 安国市|