找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computational Electrophysiology; Shinji Doi,Junko Inoue,Kunichika Tsumoto Textbook 2010 Springer-Verlag Tokyo 2010 Neuroscience.bioinforma

[復(fù)制鏈接]
樓主: 初生
21#
發(fā)表于 2025-3-25 06:34:05 | 只看該作者
A First Course in “In Silico Medicine”http://image.papertrans.cn/c/image/232269.jpg
22#
發(fā)表于 2025-3-25 08:57:05 | 只看該作者
https://doi.org/10.1007/978-3-663-04265-5systems. The dynamical system theory is related to other areas of mathematics also, for example, to the (analytic or geometric) singular perturbation theory. The singular perturbation theory is very important to analyze and understand the mathematical models in the electrophysiology (see Coombes and
23#
發(fā)表于 2025-3-25 14:10:31 | 只看該作者
https://doi.org/10.1007/978-3-663-13007-9 action potential of squid giant axon, although there are still arguments against it (Connor et al. 1977; Strassberg and DeFelice 1993; Rush and Rinzel 1995; Clay 1998). The HH equations are important not only in that it is one of the most successful mathematical model in quantitatively describing b
24#
發(fā)表于 2025-3-25 19:39:39 | 只看該作者
https://doi.org/10.1007/978-3-663-13007-9odels or abstract models. However, there is no model in which any simplifications or abstractions have not been made. Of course, many features of real neurons are ignored even in the HH equations. All models have their applicability and limits to describe natural phenomena. Therefore, all types of m
25#
發(fā)表于 2025-3-25 22:09:58 | 只看該作者
https://doi.org/10.1007/978-3-663-13006-2e HH equations, however, include various constants or parameters whose values were determined based on physiological experiments, and thus the values inherently possess a certain ambiguity. Also, the “constants” are not really constant but change temporally. Thus, in this chapter, we study the effec
26#
發(fā)表于 2025-3-26 04:06:07 | 只看該作者
27#
發(fā)表于 2025-3-26 07:22:12 | 只看該作者
https://doi.org/10.1007/978-4-431-53862-2Neuroscience; bioinformatics; biological complexity; computational approaches to biological phenomena; d
28#
發(fā)表于 2025-3-26 09:20:07 | 只看該作者
29#
發(fā)表于 2025-3-26 12:50:24 | 只看該作者
30#
發(fā)表于 2025-3-26 19:34:27 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-26 01:30
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
台北县| 柏乡县| 盐池县| 方山县| 岳池县| 高阳县| 张掖市| 辉县市| 靖西县| 华池县| 昌乐县| 牡丹江市| 隆林| 金阳县| 民丰县| 灵丘县| 灯塔市| 正宁县| 阿巴嘎旗| 莆田市| 昔阳县| 呼伦贝尔市| 永和县| 金门县| 遂昌县| 唐河县| 许昌市| 谷城县| 桑植县| 姜堰市| 和平县| 扶风县| 信阳市| 南投县| 阳春市| 云安县| 康保县| 行唐县| 泉州市| 梓潼县| 奇台县|