找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computational Discovery of Scientific Knowledge; Introduction, Techni Sa?o D?eroski,Ljup?o Todorovski Book 2007 Springer-Verlag Berlin Heid

[復(fù)制鏈接]
樓主: 充裕
11#
發(fā)表于 2025-3-23 11:49:49 | 只看該作者
Logic and the Automatic Acquisition of Scientific Knowledge: An Application to Functional Genomics describe an example of using ILP to analyse a large and complex bioinformatic database that has produced unexpected and interesting scientific results in functional genomics. We then point a possible way forward to integrating machine learning with scientific databases to form intelligent databases.
12#
發(fā)表于 2025-3-23 15:44:38 | 只看該作者
13#
發(fā)表于 2025-3-23 22:06:35 | 只看該作者
Book 2007 the scientist and engineer to benefit from these enhanced data collecting capabilities, it is becoming clear that semi-automated data analysis techniques must be applied to find the useful information in the data. Computational scientific discovery methods can be used to this end: they focus on app
14#
發(fā)表于 2025-3-24 01:15:53 | 只看該作者
Computational Discovery of Scientific Knowledgetational scientific discovery and discuss the lessons learned, especially in relation to work in data mining that has recently received substantial attention. Finally, we discuss the contents of the book and how it fits in the overall framework of computational scientific discovery.
15#
發(fā)表于 2025-3-24 05:03:10 | 只看該作者
16#
發(fā)表于 2025-3-24 07:20:08 | 只看該作者
Drug Discovery as an Example of Literature-Based Discovery, the user, typically a biomedical scientist, can efficiently filter out irrelevant information. This chapter provides an algorithmic description of the system and presents a potential drug discovery. We conclude by discussing the current and future status of literature-based discovery in the biomedical research domain.
17#
發(fā)表于 2025-3-24 14:35:24 | 只看該作者
0302-9743 pace. For the scientist and engineer to benefit from these enhanced data collecting capabilities, it is becoming clear that semi-automated data analysis techniques must be applied to find the useful information in the data. Computational scientific discovery methods can be used to this end: they fo
18#
發(fā)表于 2025-3-24 15:08:38 | 只看該作者
neue betriebswirtschaftliche forschung (nbf)aximize communicability, and then describe two visualization techniques that we developed to aid in understanding the model by exploiting the spatial nature of the data. We also report how evaluating the learned models across time let us discover an error in the data.
19#
發(fā)表于 2025-3-24 21:31:10 | 只看該作者
https://doi.org/10.1007/978-3-322-90023-4dge in pure mathematics. We discuss to what extent the output from certain programs can be considered a discovery in pure mathematics. This enables us to assess the state of the art with respect to Newell and Simon’s prediction that a computer would discover and prove an important mathematical theorem.
20#
發(fā)表于 2025-3-25 03:09:49 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 11:02
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
定结县| 黄陵县| 乌恰县| 县级市| 滦南县| 清远市| 塘沽区| 南江县| 全椒县| 洪洞县| 炎陵县| 册亨县| 阳曲县| 古交市| 伊金霍洛旗| 荆门市| 崇礼县| 湛江市| 连州市| 隆安县| 博湖县| 察隅县| 松桃| 深泽县| 滨海县| 长葛市| 旬邑县| 当涂县| 榆中县| 云南省| 台东县| 张北县| 阿拉尔市| 抚远县| 五寨县| 古交市| 都江堰市| 阿克苏市| 尼勒克县| 化隆| 卓尼县|